A193257 Floor((10^n)/(log(10^n) - 1)).
7, 27, 169, 1217, 9512, 78030, 661458, 5740303, 50701542, 454011971, 4110416300, 37550193649, 345618860220, 3201414635780, 29816233849000, 279007258230819, 2621647966812031, 24723998785919976, 233922961602470390, 2219671974013732243
Offset: 1
Keywords
Examples
a(2) = 27 because (10^2)/(log(10^2) - 1) = 27.7379415786....
References
- A. M. Legendre, Essai sur la Théorie des Nombres, Paris: Duprat, 1808.
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, Legendre's Constant
- Eric Weisstein's World of Mathematics, Prime Counting Function
- Eric Weisstein's World of Mathematics, Prime Number Theorem
Programs
-
Magma
[Floor(10^n/(Log(10^n)-1)) : n in [1..20]]
-
Mathematica
Table[Floor[10^n/(Log[10^n] - 1)], {n, 20}]
-
PARI
for(n=1, 20, print1(floor(10^n/(log(10^n)-1)), ", "))
-
PARI
a(n)=10^n\(n*log(10)-1) \\ Charles R Greathouse IV, Jul 30 2011
Formula
a(n) = floor((10^n)/(log(10^n) - 1)).
Comments