A193289 E.g.f.: A(x) = 1/(1 - 6*x^2)^(1 + 1/(3*x)).
1, 2, 16, 116, 1456, 18272, 315424, 5592512, 123304192, 2814746624, 75639399424, 2108241486848, 66872341633024, 2198914617257984, 80437062279012352, 3046047243283570688, 126259635313097506816, 5408763597941368291328, 250569314672586154835968
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + 2*x + 16*x^2/2! + 116*x^3/3! + 1456*x^4/4! + 18272*x^5/5! +... where A(x) satisfies: A(x)^(3*x/(1+3*x)) = 1 + 6*x^2 + 36*x^4 + 216*x^6 +...+ 6^n*x^(2*n) +... Also, A(x) = 1 + 2*x*(1+3*x) + 4*x^2*(1+3*x)*(1+6*x)/2! + 8*x^3*(1+3*x)*(1+6*x)*(1+9*x)/3! + 16*x^4*(1+3*x)*(1+6*x)*(1+9*x)*(1+12*x)/4! +... The logarithm begins: log(A(x)) = 2*x + 6*x^2 + 2*6*x^3/2 + 6^2*x^4/2 + 2*6^2*x^5/3 + 6^3*x^6/3 + 2*6^3*x^7/4 + 6^4*x^8/4 + 2*6^4*x^9/5 + 6^5*x^10/5 +...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
CoefficientList[Series[1/(1-6*x^2)^(1+1/(3*x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 22 2013 *)
-
PARI
{a(n)=n!*polcoeff(1/(1 - 6*x^2 +x^2*O(x^n))^((1+3*x)/(3*x)),n)}
-
PARI
{a(n)=n!*polcoeff(sum(m=0,n,2^m*x^m/m!*prod(k=1,m,1+3*k*x+x*O(x^n))),n)}
Formula
E.g.f.: A(x) = Sum_{n>=0} 2^n*x^n/n! * Product_{k=1..n} (1 + 3*k*x).
a(n) ~ n! * 6^(n/2)*(n/2)^sqrt(2/3)/(2*Gamma(1+sqrt(2/3))). - Vaclav Kotesovec, Sep 22 2013
Comments