A193344 Triangle read by rows: T(n,m) (n>=0, 1 <= m <= n+1) = number of unlabeled rigid interval posets with n non-maximal and m maximal elements.
1, 1, 1, 1, 3, 2, 2, 9, 13, 6, 5, 32, 72, 69, 24, 16, 132, 409, 605, 432, 120, 61, 623, 2480, 5016, 5498, 3120, 720, 271, 3314, 16222, 41955, 62626, 54370, 25560, 5040, 1372, 19628, 114594, 363123, 690935, 814690, 584580, 234360, 40320
Offset: 0
Examples
Triangle begins 1 1 1 1 3 2 2 9 13 6 5 32 72 69 24 16 132 409 605 432 120 61 623 2480 5016 5498 3120 720 271 3314 16222 41955 62626 54370 25560 5040 1372 19628 114594 363123 690935 814690 584580 ...
Links
- Alois P. Heinz, Rows n = 0..50, flattened
- Soheir Mohamed Khamis, Exact Counting of Unlabeled Rigid Interval Posets Regarding or Disregarding Height, Order 29, pp. 443-461 (2012).
Programs
-
Maple
w:= proc(t) option remember; `if`(t=0, 1, expand(convert(series(series(z+z*(subs( z=z+y+y*z, w(t-1)) -w(t-1)), z, t+1), y, t+1), polynom))) end: T:= (n,m)-> coeff(coeff(w(m+n), z, m), y, n): seq(seq(T(n, m), m=1..n+1), n=0..10); # Alois P. Heinz, Aug 27 2011
-
Mathematica
w[t_] := w[t] = If[t == 0, 1, Expand[Normal[Series[Series[z+z*((w[t-1] /. z -> z+y+y*z)-w[t-1]), {z, 0, t+1}], {y, 0, t+1}]]]]; T[n_, m_] := Coefficient[Coefficient[w[m+n], z, m], y, n]; Table[Table[T[n, m], {m, 1, n+1}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 05 2014, after Alois P. Heinz *)
Formula
T(n,m) = [ y^n z^m ] W(y,z); W(y,z) = z + z*(W(y,y+z+yz) - W(y,z)).