cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193344 Triangle read by rows: T(n,m) (n>=0, 1 <= m <= n+1) = number of unlabeled rigid interval posets with n non-maximal and m maximal elements.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 2, 9, 13, 6, 5, 32, 72, 69, 24, 16, 132, 409, 605, 432, 120, 61, 623, 2480, 5016, 5498, 3120, 720, 271, 3314, 16222, 41955, 62626, 54370, 25560, 5040, 1372, 19628, 114594, 363123, 690935, 814690, 584580, 234360, 40320
Offset: 0

Views

Author

N. J. A. Sloane, Aug 26 2011

Keywords

Examples

			Triangle begins
1
1 1
1 3 2
2 9 13 6
5 32 72 69 24
16 132 409 605 432 120
61 623 2480 5016 5498 3120 720
271 3314 16222 41955 62626 54370 25560 5040
1372 19628 114594 363123 690935 814690 584580 ...
		

Crossrefs

First column is A138265, second column is A194530.

Programs

  • Maple
    w:= proc(t) option remember;
          `if`(t=0, 1, expand(convert(series(series(z+z*(subs(
           z=z+y+y*z, w(t-1)) -w(t-1)), z, t+1), y, t+1), polynom)))
        end:
    T:= (n,m)-> coeff(coeff(w(m+n), z, m), y, n):
    seq(seq(T(n, m), m=1..n+1), n=0..10);  # Alois P. Heinz, Aug 27 2011
  • Mathematica
    w[t_] := w[t] = If[t == 0, 1, Expand[Normal[Series[Series[z+z*((w[t-1] /. z -> z+y+y*z)-w[t-1]), {z, 0, t+1}], {y, 0, t+1}]]]]; T[n_, m_] := Coefficient[Coefficient[w[m+n], z, m], y, n]; Table[Table[T[n, m], {m, 1, n+1}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 05 2014, after Alois P. Heinz *)

Formula

T(n,m) = [ y^n z^m ] W(y,z); W(y,z) = z + z*(W(y,y+z+yz) - W(y,z)).