cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193364 Number of permutations that have a fixed point and contain 123.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 11, 59, 369, 2665, 21823, 199983, 2028701, 22577141, 273551115, 3585133147, 50540288857, 762641865009, 12265883397719, 209475278413895, 3785852926650453, 72191462591370733, 1448516763956727331, 30507960955933725171, 672958104387944656145
Offset: 0

Views

Author

Jon Perry, Dec 20 2012

Keywords

Comments

A000142(n-2) gives number of permutations with a 123 present.
It appears that a(n) = A180191(n-2) - A018934(n-3) for n>3.

Examples

			For n=5 we have 12345, 12354 and 41235, so a(5)=3.
For n=6 we have 123456, 123465, 123546, 123465, 123645, 123654, 412356, 451236, 512346, 541236 and 612354, so a(6)=11.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<7, [0$3, 1$2, 3, 11][n+1],
           ((4*n^3-42*n^2+92*n+39) *a(n-1)
            +(32*n^3-2*n^4-163*n^2+223*n+204) *a(n-2)
            -(n-4)*(n-7)*(2*n^2-10*n-15) *a(n-3)) / (2*n^2-14*n-3))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 07 2013
  • Mathematica
    a[n_] := a[n] = If[n<7, {0, 0, 0, 1, 1, 3, 11}[[n+1]], ((4n^3 - 42n^2 + 92n + 39) a[n-1] + (32n^3 - 2n^4 - 163n^2 + 223n + 204) a[n-2] - (n-4)(n-7) (2n^2 - 10n - 15) a[n-3])/(2n^2 - 14n - 3)];
    a /@ Range[0, 30] (* Jean-François Alcover, Mar 15 2021, after Alois P. Heinz *)