A193364 Number of permutations that have a fixed point and contain 123.
0, 0, 0, 1, 1, 3, 11, 59, 369, 2665, 21823, 199983, 2028701, 22577141, 273551115, 3585133147, 50540288857, 762641865009, 12265883397719, 209475278413895, 3785852926650453, 72191462591370733, 1448516763956727331, 30507960955933725171, 672958104387944656145
Offset: 0
Keywords
Examples
For n=5 we have 12345, 12354 and 41235, so a(5)=3. For n=6 we have 123456, 123465, 123546, 123465, 123645, 123654, 412356, 451236, 512346, 541236 and 612354, so a(6)=11.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
Maple
a:= proc(n) option remember; `if`(n<7, [0$3, 1$2, 3, 11][n+1], ((4*n^3-42*n^2+92*n+39) *a(n-1) +(32*n^3-2*n^4-163*n^2+223*n+204) *a(n-2) -(n-4)*(n-7)*(2*n^2-10*n-15) *a(n-3)) / (2*n^2-14*n-3)) end: seq(a(n), n=0..30); # Alois P. Heinz, Jan 07 2013
-
Mathematica
a[n_] := a[n] = If[n<7, {0, 0, 0, 1, 1, 3, 11}[[n+1]], ((4n^3 - 42n^2 + 92n + 39) a[n-1] + (32n^3 - 2n^4 - 163n^2 + 223n + 204) a[n-2] - (n-4)(n-7) (2n^2 - 10n - 15) a[n-3])/(2n^2 - 14n - 3)]; a /@ Range[0, 30] (* Jean-François Alcover, Mar 15 2021, after Alois P. Heinz *)
Comments