A193416 Minimum surface area of polycubes with volume n.
6, 10, 14, 16, 20, 22, 24, 24, 28, 30, 32, 32, 36, 38, 40, 40, 42, 42, 46, 48, 50, 50, 52, 52, 54, 54, 54, 58, 60, 62, 62, 64, 64, 66, 66, 66, 70, 72, 74, 74, 76, 76, 78, 78, 78, 80, 80, 80, 84, 86, 88, 88, 90, 90, 92, 92, 92, 94, 94, 94, 96, 96, 96, 96, 100
Offset: 1
Keywords
Examples
The unique polycube of volume 1 is a cube with surface area 6, so a(1) = 6. There are eight polycubes of volume 4, of which seven have surface area 18 and one has surface area 16, so a(4) = 16. - _Charles R Greathouse IV_, Aug 25 2011
Links
- Eric Weisstein's World of Mathematics, Polycube
- Eric Weisstein's World of Mathematics, Ulam Spiral
Crossrefs
Programs
-
Mathematica
vals=100; az[n_]:=Floor[(n-1)^(1/3)]; kz[n_]:=n-az[n]^3; av[n_]:=6*az[n]^2; bv[n_]:=If[n==1,4,If[kz[n]>az[n]^2+(az[n]+1)*az[n],12,If[kz[n]>az[n]^2,8,4]]]; pz[n_]:=If[kz[n]
1,2*(c1[n]+c2[n]+c3[n]),2]; smin[n_]:=av[n]+bv[n]+cv[n]; Table[smin[n], {n,vals}] (* Juan Barajas Martin, Sep 01 2011 *)
Formula
a(n^3) = 6n^2, a(n) ~ 6n^(2/3). - Charles R Greathouse IV, Aug 25 2011
From Juan Barajas Martin, Aug 28 2011: (Start)
The following formula is derived from the Mathematica program below:
smin[n]={6 Floor[(-1+n)^(1/3)]^2+If[n==1,4,If[kz[n]>az[n]^2+az[n] (az[n]+1),12,If[kz[n]>az[n]^2,8,4]]]+If[n>1,2 (c1[n]+c2[n]+c3[n]),2]}
az[n_]:Floor[Power[n-1, (3)^-1]]
kz[n_]:=n-az(n)^3
c1-c3: number of unit cubes increasing the surface area by 2 in every layer (see Comments above). (End)
a(n) = 6*n - 2*A007818(n). - Mohammed Yaseen, Aug 08 2021
Comments