A193450 Triangle of a binomial convolution sum related to Jacobsthal numbers.
0, 1, 0, 2, 2, 2, 3, 6, 6, 0, 4, 12, 16, 8, 4, 5, 20, 35, 30, 15, 0, 6, 30, 66, 78, 54, 18, 6, 7, 42, 112, 168, 154, 84, 28, 0, 8, 56, 176, 320, 368, 272, 128, 32, 8, 9, 72, 261, 558, 774, 720, 450, 180, 45, 0, 10, 90, 370, 910, 1480, 1660, 1300, 700, 250, 50, 10
Offset: 0
Examples
Triangle starts: 0; 1, 0; 2, 2, 2; 3, 6, 6, 0; 4, 12, 16, 8, 4; 5, 20, 35, 30, 15, 0; ...
Crossrefs
Cf. A193451.
Programs
-
PARI
T(n,k) = sum(j=0, k, (-1)^j*n*binomial(n-j,k-j)); \\ Michel Marcus, Jun 04 2014
Formula
T(n,k) = sum( (-1)^j*n*C(n-j,k-j), j=0..k).
T(n,k) = n*C(n, k)*2F1( (1, -k); -n )(-1).
Comments