A193451 Triangle of a binomial convolution sum related to Jacobsthal numbers.
0, 0, 1, 0, 3, 3, 0, 5, 8, 2, 0, 7, 17, 14, 6, 0, 9, 30, 39, 24, 3, 0, 11, 47, 83, 75, 33, 9, 0, 13, 68, 152, 184, 126, 48, 4, 0, 15, 93, 252, 384, 354, 198, 60, 12, 0, 17, 122, 389, 716, 830, 620, 290, 80, 5, 0, 19, 155, 569, 1229, 1718, 1610, 1010, 410, 95, 15
Offset: 0
Examples
Triangle starts: 0; 0, 1; 0, 3, 3; 0, 5, 8, 2; 0, 7, 17, 14, 6; 0, 9, 30, 39, 24, 3; ...
Programs
-
PARI
T(n,k)= sum(j=0, k, (-1)^(j+k)*(j+k)*binomial(n-k+j,j)); \\ Michel Marcus, Jun 04 2014
Formula
T(n,k)= sum( (-1)^(j+k)*(j+k)*C(n-k+j,j), j=0..k).
Comments