cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193506 Decimal expansion of bean curve perimeter.

Original entry on oeis.org

3, 7, 5, 0, 2, 1, 3, 6, 4, 5, 1, 5, 7, 2, 4, 2, 5, 7, 1, 9, 2, 8, 2, 9, 5, 7, 9, 6, 6, 0, 5, 5, 1, 4, 0, 3, 1, 6, 1, 8, 2, 4, 5, 4, 8, 9, 8, 5, 1, 0, 4, 9, 1, 3, 0, 6, 0, 5, 0, 7, 8, 5, 9, 7, 8, 3, 9, 2, 0, 3, 0, 5, 9, 5, 5, 9, 8, 1, 4, 3, 1, 3, 0, 5, 7, 4, 2, 4, 8, 0, 2, 3, 2, 7, 9, 6, 2, 2, 6, 5, 1, 5, 9, 8, 6, 1, 8, 5, 7, 4
Offset: 1

Views

Author

Jean-François Alcover, Jul 29 2011

Keywords

Examples

			3.750213645...
		

Crossrefs

Cf. A193505 (area).
Cf. A336501 (decimal expansion of the lima bean curve).

Programs

  • Mathematica
    f[x_, y_] = x^4 + x^2*y^2 + y^4 - x*(x^2 + y^2); x1 = 1/3; x2 = 5/6; sx = Solve[f[x, y] == 0, x]; sy = Solve[f[x, y] == 0, y]; g1[y_] = x /. sx[[3]]; g2[y_] = x /. sx[[4]]; f[x_] = y /. sy[[4]]; p1 = NIntegrate[ Sqrt[1 + g1'[y]^2], {y, 0, f[x1]}, WorkingPrecision -> 120]; p2 = NIntegrate[ Sqrt[1 + f'[x]^2], {x, x1, x2}, WorkingPrecision -> 120]; p3 = NIntegrate[ Sqrt[1 + g2'[y]^2], {y, 0, f[x2]}, WorkingPrecision -> 120]; Take[ RealDigits[2*(p1+p2+p3)][[1]], 105]
    Take[RealDigits[9/2 + NIntegrate[2 Sqrt[1 + (1 - 2 x + (1 + 3 x - 6 x^2)/Sqrt[1 + (2 - 3 x) x])^2/(8 x (1 - x + Sqrt[1 + (2 - 3 x) x]))] - 1/Sqrt[x] - 1/(2 (1 - x)^(3/4)) - 3/(8 (1 - x)^(1/4)), {x, 0, 1}, WorkingPrecision -> 220, PrecisionGoal -> 110, MaxRecursion -> 50]][[1]], 110] (* Eric W. Weisstein, Jul 23 2020 *)