cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193515 T(n,k) = number of ways to place any number of 3X1 tiles of k distinguishable colors into an nX1 grid.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 7, 7, 6, 1, 1, 6, 9, 10, 13, 9, 1, 1, 7, 11, 13, 22, 23, 13, 1, 1, 8, 13, 16, 33, 43, 37, 19, 1, 1, 9, 15, 19, 46, 69, 73, 63, 28, 1, 1, 10, 17, 22, 61, 101, 121, 139, 109, 41, 1, 1, 11, 19, 25, 78, 139, 181, 253, 268, 183, 60, 1, 1, 12
Offset: 1

Views

Author

R. H. Hardin, with proof and formula from Robert Israel in the Sequence Fans Mailing List, Jul 29 2011

Keywords

Comments

Table starts:
..1...1...1...1...1....1....1....1....1....1....1....1.....1.....1.....1.....1
..1...1...1...1...1....1....1....1....1....1....1....1.....1.....1.....1.....1
..2...3...4...5...6....7....8....9...10...11...12...13....14....15....16....17
..3...5...7...9..11...13...15...17...19...21...23...25....27....29....31....33
..4...7..10..13..16...19...22...25...28...31...34...37....40....43....46....49
..6..13..22..33..46...61...78...97..118..141..166..193...222...253...286...321
..9..23..43..69.101..139..183..233..289..351..419..493...573...659...751...849
.13..37..73.121.181..253..337..433..541..661..793..937..1093..1261..1441..1633
.19..63.139.253.411..619..883.1209.1603.2071.2619.3253..3979..4803..5731..6769
.28.109.268.529.916.1453.2164.3073.4204.5581.7228.9169.11428.14029.16996.20353

Examples

			Some solutions for n=7 k=3; colors=1,2,3 and empty=0
..3....0....0....2....0....1....3....0....0....0....1....0....3....1....0....0
..3....0....0....2....2....1....3....2....1....0....1....3....3....1....0....0
..3....1....0....2....2....1....3....2....1....2....1....3....3....1....0....3
..1....1....3....0....2....0....0....2....1....2....3....3....0....2....0....3
..1....1....3....0....0....2....2....2....1....2....3....2....1....2....1....3
..1....0....3....0....0....2....2....2....1....0....3....2....1....2....1....0
..0....0....0....0....0....2....2....2....1....0....0....2....1....0....1....0
		

Crossrefs

Column 1 is A000930,
Column 2 is A003229(n-1),
Column 3 is A084386,
Column 4 is A089977,
Column 10 is A178205,
Row 6 is A028872(n+2),
Row 7 is A144390(n+1),
Row 8 is A003154(n+1).

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(n<0, 0,
          `if`(n<3 or k=0, 1, k*T(n-3, k) +T(n-1, k)))
        end:
    seq(seq(T(n, d+1-n), n=1..d), d=1..13); # Alois P. Heinz, Jul 29 2011
  • Mathematica
    nmax = 13; t[?Negative, ] = 0; t[n_, k_] /; (n < 3 || k == 0) = 1; t[n_, k_] := t[n, k] = k*t[n-3, k] + t[n-1, k]; Flatten[ Table[ t[n-k+1, k], {n , 1, nmax}, {k, n, 1, -1}]](* Jean-François Alcover, Nov 28 2011, after Maple *)

Formula

With z X 1 tiles of k colors on an n X 1 grid (with n >= z), either there is a tile (of any of the k colors) on the first spot, followed by any configuration on the remaining (n-z) X 1 grid, or the first spot is vacant, followed by any configuration on the remaining (n-1) X 1. So T(n,k) = T(n-1,k) + k*T(n-z,k), with T(n,k) = 1 for n=0,1,...,z-1. The solution is T(n,k) = sum_r r^(-n-1)/(1 + z k r^(z-1)) where the sum is over the roots of the polynomial k x^z + x - 1.
T(n,k) = sum {s=0..[n/3]} (binomial(n-2*s,s)*k^s).
For z X 1 tiles, T(n,k,z) = sum{s=0..[n/z]} (binomial(n-(z-1)*s,s)*k^s). - R. H. Hardin, Jul 31 2011