A193515 T(n,k) = number of ways to place any number of 3X1 tiles of k distinguishable colors into an nX1 grid.
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 7, 7, 6, 1, 1, 6, 9, 10, 13, 9, 1, 1, 7, 11, 13, 22, 23, 13, 1, 1, 8, 13, 16, 33, 43, 37, 19, 1, 1, 9, 15, 19, 46, 69, 73, 63, 28, 1, 1, 10, 17, 22, 61, 101, 121, 139, 109, 41, 1, 1, 11, 19, 25, 78, 139, 181, 253, 268, 183, 60, 1, 1, 12
Offset: 1
Examples
Some solutions for n=7 k=3; colors=1,2,3 and empty=0 ..3....0....0....2....0....1....3....0....0....0....1....0....3....1....0....0 ..3....0....0....2....2....1....3....2....1....0....1....3....3....1....0....0 ..3....1....0....2....2....1....3....2....1....2....1....3....3....1....0....3 ..1....1....3....0....2....0....0....2....1....2....3....3....0....2....0....3 ..1....1....3....0....0....2....2....2....1....2....3....2....1....2....1....3 ..1....0....3....0....0....2....2....2....1....0....3....2....1....2....1....0 ..0....0....0....0....0....2....2....2....1....0....0....2....1....0....1....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Crossrefs
Programs
-
Maple
T:= proc(n, k) option remember; `if`(n<0, 0, `if`(n<3 or k=0, 1, k*T(n-3, k) +T(n-1, k))) end: seq(seq(T(n, d+1-n), n=1..d), d=1..13); # Alois P. Heinz, Jul 29 2011
-
Mathematica
nmax = 13; t[?Negative, ] = 0; t[n_, k_] /; (n < 3 || k == 0) = 1; t[n_, k_] := t[n, k] = k*t[n-3, k] + t[n-1, k]; Flatten[ Table[ t[n-k+1, k], {n , 1, nmax}, {k, n, 1, -1}]](* Jean-François Alcover, Nov 28 2011, after Maple *)
Formula
With z X 1 tiles of k colors on an n X 1 grid (with n >= z), either there is a tile (of any of the k colors) on the first spot, followed by any configuration on the remaining (n-z) X 1 grid, or the first spot is vacant, followed by any configuration on the remaining (n-1) X 1. So T(n,k) = T(n-1,k) + k*T(n-z,k), with T(n,k) = 1 for n=0,1,...,z-1. The solution is T(n,k) = sum_r r^(-n-1)/(1 + z k r^(z-1)) where the sum is over the roots of the polynomial k x^z + x - 1.
T(n,k) = sum {s=0..[n/3]} (binomial(n-2*s,s)*k^s).
For z X 1 tiles, T(n,k,z) = sum{s=0..[n/z]} (binomial(n-(z-1)*s,s)*k^s). - R. H. Hardin, Jul 31 2011
Comments