cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193519 a(n) = (2/3)*Sum_{i=1..n-1} A000129(i)*3^(n-i).

Original entry on oeis.org

0, 0, 2, 10, 40, 144, 490, 1610, 5168, 16320, 50930, 157546, 484120, 1480080, 4507162, 13683050, 41439200, 125259264, 378051170, 1139641930, 3432176008, 10328516880, 31062778570, 93374780426, 280574458640, 842810055360, 2531053642322, 7599494558890, 22813774416760, 68478238362384
Offset: 0

Views

Author

N. J. A. Sloane, Jul 29 2011

Keywords

Comments

Number of ternary words of length n on {0,1,2} containing the subwords 02 or 20. - Philippe Deléham, Apr 27 2012

Examples

			a(3) = 10 because among the 3^3 = 27 ternary words of length 3 only 10, namely 002, 020, 021, 022, 102, 120, 200, 201, 202, 220 contain the subwords 02 or 20. - _Philippe Deléham_, Apr 27 2012
		

Crossrefs

Programs

  • Magma
    [n le 3 select 2*Floor((n-1)/2) else 5*Self(n-1) -5*Self(n-2) -3*Self(n-3): n in [1..31]]; // G. C. Greubel, Jan 05 2022
    
  • Mathematica
    Table[(2*3^n - LucasL[n+1, 2])/2, {n, 0, 30}] (* G. C. Greubel, Jan 05 2022 *)
  • Sage
    [(2*3^n - lucas_number2(n+1, 2, -1))/2 for n in (0..30)] # G. C. Greubel, Jan 05 2022

Formula

a(n) = 2*A137212(n).
G.f.: 2*x^2/((1-3*x)*(1-2*x-x^2)). - Philippe Deléham, Apr 27 2012
a(n) = 5*a(n-1) - 5*a(n-2) - 3*a(n-3), a(0) = a(1) = 0, a(2) = 2. - Philippe Deléham, Apr 27 2012
a(n) = (1/2)*(2*3^n - A002203(n+1)). - G. C. Greubel, Jan 05 2022