A193525 Number of even divisors of sopf(n).
0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 2, 0, 4, 0, 0, 0, 4, 0, 0, 4, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 2, 0, 0, 2, 0, 0, 2, 1, 3, 4, 0, 0, 2, 2, 0, 0, 0, 0, 3, 0, 3, 3, 0, 0, 0, 0, 0, 4, 2, 0
Offset: 1
Keywords
Examples
a(15) = 3 because sopf(15) = 8 and its 3 even divisors are {2, 4, 8}.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_] := Block[{d=Divisors[Plus@@First[Transpose[FactorInteger[n]]]]}, Count[EvenQ[d],True]]; Table[f[n] ,{n,100}] Array[Count[Divisors[Total[FactorInteger[#][[All,1]]]],?EvenQ]&,100] (* _Harvey P. Dale, Jun 20 2019 *) even[n_] := (e = IntegerExponent[n, 2]) * DivisorSigma[0, n / 2^e]; a[n_] := even[Plus @@ FactorInteger[n][[;;, 1]]]; Array[a, 100] (* Amiram Eldar, Jul 06 2022 *)
-
PARI
sopf(n:int)=my(f=factor(n)[,1]); sum(i=1,#f,f[i]) a(n)=if(n==1,0,n=sopf(n);if(n%2,0,numdiv(n/2))) \\ Charles R Greathouse IV, Jul 31 2011
Comments