cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193525 Number of even divisors of sopf(n).

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 2, 0, 4, 0, 0, 0, 4, 0, 0, 4, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 2, 0, 0, 2, 0, 0, 2, 1, 3, 4, 0, 0, 2, 2, 0, 0, 0, 0, 3, 0, 3, 3, 0, 0, 0, 0, 0, 4, 2, 0
Offset: 1

Views

Author

Michel Lagneau, Jul 29 2011

Keywords

Comments

Sopf(n) is the sum of the distinct primes dividing n (A008472).

Examples

			a(15) = 3 because sopf(15) = 8 and its 3 even divisors are {2, 4, 8}.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{d=Divisors[Plus@@First[Transpose[FactorInteger[n]]]]}, Count[EvenQ[d],True]]; Table[f[n] ,{n,100}]
    Array[Count[Divisors[Total[FactorInteger[#][[All,1]]]],?EvenQ]&,100] (* _Harvey P. Dale, Jun 20 2019 *)
    even[n_] := (e = IntegerExponent[n, 2]) * DivisorSigma[0, n / 2^e];  a[n_] := even[Plus @@ FactorInteger[n][[;;, 1]]]; Array[a, 100] (* Amiram Eldar, Jul 06 2022 *)
  • PARI
    sopf(n:int)=my(f=factor(n)[,1]); sum(i=1,#f,f[i])
    a(n)=if(n==1,0,n=sopf(n);if(n%2,0,numdiv(n/2))) \\ Charles R Greathouse IV, Jul 31 2011

Formula

a(n) = A183063(A008472(n)). - Amiram Eldar, Jul 06 2022