A193554 Triangle read by rows: first column: top entry is 1, then powers of 2; rest of triangle is Pascal's triangle A007318.
1, 1, 1, 2, 1, 1, 4, 1, 2, 1, 8, 1, 3, 3, 1, 16, 1, 4, 6, 4, 1, 32, 1, 5, 10, 10, 5, 1, 64, 1, 6, 15, 20, 15, 6, 1, 128, 1, 7, 21, 35, 35, 21, 7, 1, 256, 1, 8, 28, 56, 70, 56, 28, 8, 1, 512, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1024, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 2048, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 2, 1, 1; 4, 1, 2, 1; 8, 1, 3, 3, 1; 16, 1, 4, 6, 4, 1; 32, 1, 5, 10, 10, 5, 1; 64, 1, 6, 15, 20, 15, 6, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
function T(n,k) if k eq n then return 1; elif k eq 0 then return 2^(n-1); else return Binomial(n-1, k-1); end if; return T; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2019
-
Maple
T:= proc(n, k) option remember; if k=n then 1 elif k=0 then 2^(n-1) else binomial(n-1,k-1) fi; end: seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Nov 20 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==n, 1, If[k==0, 2^(n-1), Binomial[n-1, k-1]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 20 2019 *)
-
PARI
T(n,k) = if(k==n, 1, if(k==0, 2^(n-1), binomial(n-1, k-1) )); \\ G. C. Greubel, Nov 20 2019
-
Sage
@CachedFunction def T(n, k): if (k==n): return 1 elif (k==0): return 2^(n-1) else: return binomial(n-1, k-1) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 20 2019
Comments