cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A193589 Augmentation of the Fibonacci triangle A193588. See Comments.

Original entry on oeis.org

1, 1, 2, 1, 4, 7, 1, 6, 18, 31, 1, 8, 33, 90, 154, 1, 10, 52, 185, 481, 820, 1, 12, 75, 324, 1065, 2690, 4575, 1, 14, 102, 515, 2006, 6276, 15547, 26398, 1, 16, 133, 766, 3420, 12468, 37711, 92124, 156233, 1, 18, 168, 1085, 5439, 22412, 78030, 230277
Offset: 0

Views

Author

Clark Kimberling, Jul 31 2011

Keywords

Comments

For an introduction to the unary operation augmentation as applied to triangular arrays or sequences of polynomials, see A193091.
Regarding A193589, if the triangle is written as (w(n,k)), then w(n,n)=A007863(n); w(n,n-1)=A011270; and
(col 3)=A033537.

Examples

			First 5 rows of A193588:
1
1....2
1....2....3
1....2....3....5
1....2....3....5....8
First 5 rows of A193589:
1
1....2
1....4....7
1....6....18...31
1....8....33...90...154
		

Crossrefs

Programs

  • Mathematica
    p[n_, k_] := Fibonacci[k + 2]
    Table[p[n, k], {n, 0, 5}, {k, 0, n}]  (* A193588 *)
    m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}]
    TableForm[m[4]]
    w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1];
    v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]};
    v[n_] := v[n - 1].m[n]
    TableForm[Table[v[n], {n, 0, 6}]]  (* A193589 *)
    Flatten[Table[v[n], {n, 0, 8}]]
Showing 1-1 of 1 results.