cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193594 Number of attractors under iteration of sum of cubes of digits in base b.

Original entry on oeis.org

1, 6, 9, 6, 9, 34, 11, 28, 15, 46, 22, 50, 49, 60, 86, 86, 60, 128, 22, 58, 118, 93, 64, 185, 5, 109, 102, 100, 122, 184, 51, 94, 205, 131, 173, 275, 67, 216, 131, 127, 34, 360, 114, 78, 215, 213, 393, 479, 76, 254, 634, 197, 214, 496, 348, 170, 437, 349, 290
Offset: 2

Views

Author

Martin Renner, Jul 31 2011

Keywords

Comments

If b>=2 and a >= 2*b^3, then S(a,3,b)

Examples

			In the decimal system all integers go to (1); (153); (370); (371); (407) or (55, 250,133); (136, 244); (160, 217, 352); (919, 1459) under the iteration of sum of cubes of digits, hence there are five fixed points, two 2-cycles and two 3-cycles. Therefore a(10) = 5 + 2*2 + 2*3 = 15.
		

Crossrefs

Cf. A193586.

Programs

  • Maple
    S:=proc(n, p, b) local Q, k, N, z; Q:=[convert(n, base, b)]; for k from 1 do N:=Q[k]; z:=convert(sum(N['i']^p, 'i'=1..nops(N)), base, b); if not member(z, Q) then Q:=[op(Q), z]; else Q:=[op(Q), z]; break; fi; od; return Q; end:
    NumberOfAttractors:=proc(b) local A,i,Q; A:=[]: for i from 1 to 2*b^3 do Q:=S(i,3,b); A:=[op(A),Q[nops(Q)]]; od: return(nops({op(A)})); end:
    seq(NumberOfAttractors(b),b=2..20);