cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193600 Indices n such that Padovan(n) < r^n/(2*r+3) where r is the real root of the polynomial x^3-x-1.

Original entry on oeis.org

1, 2, 4, 7, 9, 12, 14, 15, 17, 19, 20, 22, 25, 27, 30, 32, 33, 35, 37, 38, 40, 43, 45, 48, 50, 51, 53, 56, 58, 61, 63, 64, 66, 68, 69, 71, 74, 76, 79, 81, 82, 84, 86, 87, 89, 92, 94, 97, 99, 100, 102, 104, 105, 107, 110, 112, 113, 115, 117, 118, 120, 123
Offset: 1

Views

Author

Francesco Daddi, Jul 31 2011

Keywords

Comments

R is the so-called plastic number (A060006). Padovan(n) = (r^n)/(2r+3) + (s^n)/(2s+3) + (t^n)/(2t+3) where r (real), s, t are the three roots of x^3-x-1. Also Padovan(n) is asymptotic to r^n / (2*r+3).

Examples

			For n=25, Padovan(25) = A000931(25) = 200 < 200.023... = r^25/(2*r+3).
		

Crossrefs

Programs

  • Mathematica
    lim=200; R = Solve[x^3 - x - 1 == 0, x][[1, 1, 2]]; powers = Table[Floor[R^n/(2*R + 3)], {n, lim}]; p = Rest[CoefficientList[Series[(1 - x^2)/(1 - x^2 - x^3), {x, 0, lim}], x]]; Select[Range[lim], p[[#]] <= powers[[#]] &] (* T. D. Noe, Aug 01 2011 *)