cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A193621 G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n * A(x)^A026255(n).

Original entry on oeis.org

1, 1, 3, 9, 32, 122, 490, 2044, 8769, 38455, 171606, 776763, 3557681, 16457402, 76778667, 360830164, 1706641162, 8117569255, 38804142203, 186323145806, 898247214881, 4346078073871, 21097315227638, 102721050351404, 501515949459113, 2454747530072567, 12043165949629976
Offset: 0

Views

Author

Paul D. Hanna, Sep 01 2011

Keywords

Comments

Sequence A026255 is a self-inverse permutation of the natural numbers where
A026255([k*sqrt(3)]) = [k*(3+sqrt(3))/2] and
A026255([k*(3+sqrt(3))/2]) = [k*sqrt(3)] for k>=1, and [x] = floor(x).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 32*x^4 + 122*x^5 + 490*x^6 +...
where A(x) = 1 + x*A(x)^2 + x^2*A(x) + x^3*A(x)^4 + x^4*A(x)^3 + x^5*A(x)^7 + x^6*A(x)^9 + x^7*A(x)^5 + x^8*A(x)^11 + x^9*A(x)^6 + x^10*A(x)^14 +...
which also equals: A(x) = 1 + A(x)*x^2 + A(x)^2*x + A(x)^3*x^4 + A(x)^4*x^3 + A(x)^5*x^7 + A(x)^6*x^9 + A(x)^7*x^5 + A(x)^8*x^11 + A(x)^9*x^6 + A(x)^10*x^14 +...
In the above series, the exponents begin:
A026255 = [2,1,4,3,7,9,5,11,6,14,8,16,18,10,21,12,23,13,26,28,15,30...].
		

Crossrefs

Cf. A193620.

Programs

  • PARI
    {a(n)=local(A=1+x,s=sqrt(3),t=(3+sqrt(3))/2);for(i=1,n,A=1+sum(m=1, n, x^floor(m*s)*(A+x*O(x^n))^floor(m*t)+ x^floor(m*t)*(A+x*O(x^n))^floor(m*s))); polcoeff(A, n)}

Formula

G.f. satisfies: A(x) = 1 + Sum_{n>=1} A(x)^n * x^A026255(n).
Showing 1-1 of 1 results.