cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A193673 Triangle given by p(n,k)=(coefficient of x^(n-k) in (1/2) ((x+3)^n+(x+1)^n)), 0<=k<=n.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 14, 15, 6, 1, 41, 56, 30, 8, 1, 122, 205, 140, 50, 10, 1, 365, 732, 615, 280, 75, 12, 1, 1094, 2555, 2562, 1435, 490, 105, 14, 1, 3281, 8752, 10220, 6832, 2870, 784, 140, 16, 1, 9842, 29529, 39384, 30660, 15372, 5166, 1176, 180, 18, 1, 29525
Offset: 0

Views

Author

Clark Kimberling, Aug 02 2011

Keywords

Examples

			First five rows:
   1
   2   1
   5   4   1
  14  15   6   1
  41  56  30   8   1
		

Crossrefs

Programs

  • Mathematica
    q[n_, k_] := 1; r[0] = 1;
     r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}]
    p[n_, k_] := Coefficient[(1/2) ((x + 3)^n + (x + 1)^n), x, k] (* A193673 *)
    v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
    Table[v[n], {n, 0, 20}]    (* A193661 *)
    TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
    Table[r[k], {k, 0, 8}]  (* 2^k *)
    TableForm[Table[p[n, k], {n, 0, 10}, {k, 0, n}]] (* A193673 as a triangle *)
    Flatten[%] (* A193673 as a sequence *)

Formula

From Mélika Tebni, Dec 09 2023: (Start)
T(n,k) = binomial(n,k)*(1 + 3^(n-k)) / 2.
E.g.f. of column k: exp(2*x)*cosh(x)*x^k / k!. (End)
From Peter Bala, Mar 07 2024: (Start)
Exponential Riordan array (exp(2*x)*cosh(x), x).
The zeros of the n-th row polynomial R(n,x) = ((1 + x)^n + (3 + x)^n)/2 lie on the vertical line Re(x) = -2 in the complex plane.
Triangle equals P * (I + P^2)/2 = P * A119468 = P^2 * A119467, where P denotes Pascal's triangle A007318. (End)
Showing 1-1 of 1 results.