A193649 Q-residue of the (n+1)st Fibonacci polynomial, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)
1, 1, 3, 5, 15, 33, 91, 221, 583, 1465, 3795, 9653, 24831, 63441, 162763, 416525, 1067575, 2733673, 7003971, 17938661, 45954543, 117709185, 301527355, 772364093, 1978473511
Offset: 0
Keywords
A193973 Triangular array: the fission of (p(n,x)) by (q(n,x)), where p(n,x)=x*p(n-1,x)+n+1 with p(0,x)=1, and q(n,x)=x*p(n-1,x)+1 with p(0,x)=1.
2, 3, 5, 4, 7, 9, 5, 9, 12, 14, 6, 11, 15, 18, 20, 7, 13, 18, 22, 25, 27, 8, 15, 21, 26, 30, 33, 35, 9, 17, 24, 30, 35, 39, 42, 44, 10, 19, 27, 34, 40, 45, 49, 52, 54, 11, 21, 30, 38, 45, 51, 56, 60, 63, 65, 12, 23, 33, 42, 50, 57, 63, 68, 72, 75, 77, 13, 25, 36, 46
Offset: 0
Comments
See A193842 for the definition of fission of two sequences of polynomials or triangular arrays.
This array show the differences of the sequence of triangular numbers (A000217); viz., row n consists of t(n) - t(n-k) for k=1..n-1. - Clark Kimberling, Apr 15 2017
Examples
First six rows: 2; 3, 5; 4, 7, 9; 5, 9, 12, 14; 6, 11, 15, 18, 20; 7, 13, 18, 22, 25, 27; ...
Links
- Clark Kimberling, Table of n, a(n) for n = 0..10000
Programs
-
Maple
a000217 := proc(n) n*(n+1)/2 end: seq(print(seq(a000217(n+2) - a000217(n+1-k),k=0..n)),n=0..5); # Georg Fischer, May 03 2022
-
Mathematica
z = 13; p[0, x_] := 1; p[n_, x_] := x*p[n - 1, x] + n + 1; q[0, x_] := 1; q[n_, x_] := x*q[n - 1, x] + 1; p1[n_, k_] := Coefficient[p[n, x], x^k]; p1[n_, 0] := p[n, x] /. x -> 0; d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] h[n_] := CoefficientList[d[n, x], {x}] TableForm[Table[Reverse[h[n]], {n, 0, z}]] Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193973 *) TableForm[Table[h[n], {n, 0, z}]] Flatten[Table[h[n], {n, -1, z}]] (* A193974 *)
Comments
Examples
Crossrefs
Programs
Mathematica
Formula