cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193674 Number of nonisomorphic systems enumerated by A102896; that is, the number of inequivalent closure operators (or Moore families).

Original entry on oeis.org

1, 2, 5, 19, 184, 14664, 108295846, 2796163199765896
Offset: 0

Views

Author

Don Knuth, Jul 01 2005

Keywords

Comments

Also the number of unlabeled n-vertex set-systems (A003180) closed under union. - Gus Wiseman, Aug 01 2019

Examples

			From _Gus Wiseman_, Aug 01 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(3) = 19 set-systems closed under union:
  {}  {}     {}               {}
      {{1}}  {{1}}            {{1}}
             {{1,2}}          {{1,2}}
             {{2},{1,2}}      {{1,2,3}}
             {{1},{2},{1,2}}  {{2},{1,2}}
                              {{3},{1,2,3}}
                              {{1},{2},{1,2}}
                              {{2,3},{1,2,3}}
                              {{1},{2,3},{1,2,3}}
                              {{3},{2,3},{1,2,3}}
                              {{1,3},{2,3},{1,2,3}}
                              {{2},{3},{2,3},{1,2,3}}
                              {{2},{1,3},{2,3},{1,2,3}}
                              {{3},{1,3},{2,3},{1,2,3}}
                              {{1,2},{1,3},{2,3},{1,2,3}}
                              {{2},{3},{1,3},{2,3},{1,2,3}}
                              {{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
(End)
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.1.1

Crossrefs

The labeled case is A102896.
The covering case is A108798.
The same for intersection instead of union is A108800.
The case with empty edges allowed is A193675.

Formula

a(n) = A193675(n)/2.

Extensions

a(6) received Aug 17 2005
a(6) corrected by Pierre Colomb, Aug 02 2011
a(7) from Gunnar Brinkmann, Feb 07 2018