A193678 Discriminant of Chebyshev C-polynomials.
1, 8, 108, 2048, 50000, 1492992, 52706752, 2147483648, 99179645184, 5120000000000, 292159150705664, 18260173718028288, 1240576436601868288, 91029559914971267072, 7174453500000000000000, 604462909807314587353088, 54214017802982966177103872
Offset: 1
Examples
n=3: The zeros are [sqrt(3),0,-sqrt(3)]. The Vn(xn[0],..,xn[n-1]) matrix is [[1,1,1],[sqrt(3),0,-sqrt(3)],[3,0,3]]. The squared determinant is 108 = a(3).
References
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990; p. 219 for T and U polynomials.
Links
- Robert Israel, Table of n, a(n) for n = 1..320
- Sinan Deveci, On a Double Series Representation of the Natural Logarithm, the Asymptotic Behavior of Hölder Means, and an Elementary Estimate for the Prime Counting Function, arXiv:2211.10751 [math.NT], 2022.
Crossrefs
Cf. A127670.
Programs
-
Magma
[(2^(n-1))*n^n: n in [1..20]]; // Vincenzo Librandi, Aug 04 2015
-
Maple
seq(discrim(2*orthopoly[T](n,x/2), x), n = 1..50); # Robert Israel, Aug 04 2015
-
Mathematica
t=Table[NumberFieldDiscriminant[2^(1/m)], {m, 1, 20}] (* signed version *) Abs[t] (* Clark Kimberling, Aug 03 2015 *) Table[(2^(n - 1)) n^n, {n, 20}] (* Vincenzo Librandi, Aug 04 2015 *)
Formula
a(n) = (Det(Vn(xn[0],..,xn[n-1])))^2, with the n x n Vandermonde matrix Vn and the zeros xn[j],j=0..n-1, given above in a comment.
a(n) = (2^(n-1))*n^n, n>=1.
Comments