A193691 Triangle T(n,k), n>=0, 1<=k<=C(n), read by rows: T(n,k) = number of elements <= k-th path in the poset of Dyck paths of semilength n ordered by inclusion.
1, 1, 1, 2, 1, 2, 2, 4, 5, 1, 2, 2, 4, 5, 2, 4, 4, 8, 10, 5, 10, 13, 14, 1, 2, 2, 4, 5, 2, 4, 4, 8, 10, 5, 10, 13, 14, 2, 4, 4, 8, 10, 4, 8, 8, 16, 20, 10, 20, 26, 28, 5, 10, 10, 20, 25, 13, 26, 34, 37, 14, 28, 37, 41, 42, 1, 2, 2, 4, 5, 2, 4, 4, 8, 10, 5, 10, 13, 14, 2, 4, 4, 8, 10, 4
Offset: 0
Examples
Dyck paths of semilength n=3 listed in lexicographic order: . /\ . /\ /\ /\/\ / \ . /\/\/\ /\/ \ / \/\ / \ / \ . 101010 101100 110010 110100 111000 . k = (1) (2) (3) (4) (5) . We have (1) <= (1); (1),(2) <= (2); (1),(3) <= (3); (1),(2),(3),(4) <= (4); and (1),(2),(3),(4),(5) <= (5), thus row 3 = [1, 2, 2, 4, 5]. Triangle begins: 1; 1; 1, 2; 1, 2, 2, 4, 5; 1, 2, 2, 4, 5, 2, 4, 4, 8, 10, 5, 10, 13, 14; 1, 2, 2, 4, 5, 2, 4, 4, 8, 10, 5, 10, 13, 14, 2, 4, 4, 8, ...
Links
- Alois P. Heinz, Rows n = 0..9, flattened
Crossrefs
Programs
-
Maple
d:= proc(n, l) local m; m:= nops(l); `if`(n=m, [l], [seq(d(n, [l[], j])[], j=`if`(m=0, 1, max(m+1, l[-1]))..n)]) end: le:= proc(x, y) local i; for i to nops(x) do if x[i]>y[i] then return false fi od; true end: T:= proc(n) option remember; local l; l:= d(n, []); seq(add(`if`(le(l[i], l[j]), 1, 0), i=1..j), j=1..nops(l)) end: seq(T(n), n=0..6);
-
Mathematica
d[n_, l_] := d[n, l] = Module[{m}, m = Length[l]; If[n == m, {l}, Flatten[#, 1]& @ Table[d[n, Append[l, j]], {j, If[m == 0, 1, Max[m+1, Last[l]]], n}]]]; le[x_, y_] := Module[{i}, For[i = 1, i <= Length[x], i++, If[x[[i]] > y[[i]], Return[False]]]; True]; T[n_] := T[n] = Module[{l}, l = d[n, {}]; Table[Sum[If[le[l[[i]], l[[j]]], 1, 0], {i, 1, j}], {j, 1, Length[l]}]]; Table[T[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Feb 01 2017, after Alois P. Heinz *)