cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193702 T(n,k)=Number of arrays of -k..k integers x(1..n) with every x(i) being in a subsequence of length 1, 2 or 3 with sum zero.

Original entry on oeis.org

1, 1, 3, 1, 5, 9, 1, 7, 23, 23, 1, 9, 43, 83, 57, 1, 11, 69, 181, 299, 141, 1, 13, 101, 317, 827, 1081, 351, 1, 15, 139, 491, 1741, 3773, 3931, 875, 1, 17, 183, 703, 3141, 9385, 17197, 14293, 2181, 1, 19, 233, 953, 5127, 19301, 50035, 78407, 51955, 5435, 1, 21, 289, 1241
Offset: 1

Views

Author

R. H. Hardin Aug 02 2011

Keywords

Comments

Table starts
....1......1.......1.......1........1........1.........1.........1.........1
....3......5.......7.......9.......11.......13........15........17........19
....9.....23......43......69......101......139.......183.......233.......289
...23.....83.....181.....317......491......703.......953......1241......1567
...57....299.....827....1741.....3141.....5127......7799.....11257.....15601
..141...1081....3773....9385....19301....35121.....58661.....91953....137245
..351...3931...17197...50035...115761...231121....416291....694877...1093915
..875..14293...78407..268453...706591..1571745...3109443...5641657...9576643
.2181..51955..357403.1438203..4292223.10581553..22837977..44687885..81096625
.5435.188859.1629369.7705011.26065517.71181241.167468295.352989885.683733847

Examples

			Some solutions for n=7 k=6
.-2...-5...-3...-4...-1...-1...-4...-3...-3...-3...-5...-2...-2...-4...-5...-3
..0....5....3....4....3....1....4...-1....4...-1....1....4....0....6....5....3
..2...-5....1...-2...-2....0....5....4...-1....4....4...-2....2...-2....0....6
..1....2....2....2...-6...-1...-6....0....1...-3...-3...-2...-5....2...-5...-6
.-3...-2...-3...-2....6...-5....1...-1...-2....2...-2...-2....5...-4....5....3
..5....6....0....2...-6....6....3....4....1...-6....5....4....3....4...-2...-5
.-5...-4....0...-2....0...-6...-3...-3....0....4...-3....0...-3...-4...-3....2