A193724 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(x+2)^n and q(n,x)=(x+1)^n.
1, 1, 1, 2, 5, 3, 4, 16, 21, 9, 8, 44, 90, 81, 27, 16, 112, 312, 432, 297, 81, 32, 272, 960, 1800, 1890, 1053, 243, 64, 640, 2736, 6480, 9180, 7776, 3645, 729, 128, 1472, 7392, 21168, 37800, 43092, 30618, 12393, 2187, 256, 3328, 19200, 64512, 139104
Offset: 0
Examples
First six rows: 1; 1, 1; 2, 5, 3; 4, 16, 21, 9; 8, 44, 90, 81, 27; 16, 112, 312, 432, 297, 81;
Programs
-
Mathematica
z = 8; a = 1; b = 2; c = 1; d = 1; p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193724 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193725 *)
Formula
T(n,k) = 3*T(n-1,k-1) + 2*T(n-1,k) with T(0,0)=T(1,0)=T(1,1)=1. - Philippe Deléham, Oct 05 2011
G.f.: (-1+x+2*x*y)/(-1+2*x+3*x*y). - R. J. Mathar, Aug 11 2015
Comments