A193725 Mirror of the triangle A193724.
1, 1, 1, 3, 5, 2, 9, 21, 16, 4, 27, 81, 90, 44, 8, 81, 297, 432, 312, 112, 16, 243, 1053, 1890, 1800, 960, 272, 32, 729, 3645, 7776, 9180, 6480, 2736, 640, 64, 2187, 12393, 30618, 43092, 37800, 21168, 7392, 1472, 128, 6561, 41553, 116640, 190512, 199584, 139104, 64512, 19200, 3328, 256
Offset: 0
Examples
First six rows: 1; 1, 1; 3, 5, 2; 9, 21, 16, 4; 27, 81, 90, 44, 8; 81, 297, 432, 312, 112, 16;
Programs
-
Mathematica
z = 8; a = 1; b = 2; c = 1; d = 1; p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193724 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193725 *)
Formula
T(n,k) = 2*T(n-1,k-1) + 3*T(n-1,k) with T(0,0)=T(1,0)=T(1,1)=1. - Philippe Deléham, Oct 05 2011
G.f.: (-1+2*x+x*y)/(-1+3*x+2*x*y). - R. J. Mathar, Aug 11 2015
Comments