cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 92 results. Next

A193723 Mirror of the fusion triangle A193722.

Original entry on oeis.org

1, 2, 1, 6, 5, 1, 18, 21, 8, 1, 54, 81, 45, 11, 1, 162, 297, 216, 78, 14, 1, 486, 1053, 945, 450, 120, 17, 1, 1458, 3645, 3888, 2295, 810, 171, 20, 1, 4374, 12393, 15309, 10773, 4725, 1323, 231, 23, 1, 13122, 41553, 58320, 47628, 24948, 8694, 2016, 300, 26, 1
Offset: 0

Views

Author

Clark Kimberling, Aug 04 2011

Keywords

Comments

A193723 is obtained by reversing the rows of the triangle A193722.
Triangle T(n,k), read by rows, given by [2,1,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 04 2011
From Philippe Deléham, Nov 14 2011: (Start)
Riordan array ((1-x)/(1-3x), x/(1-3x)).
Product A200139*A007318 as infinite lower triangular arrays. (End)

Examples

			First six rows:
    1;
    2,   1;
    6,   5,   1;
   18,  21,   8,   1;
   54,  81,  45,  11,   1;
  162, 297, 216,  78,  14,   1;
		

Crossrefs

Cf. A084938, A193722, A052924 (antidiagonal sums), Diagonals: A000012, A016789, A081266, Columns: A025192, A081038.

Programs

  • Mathematica
    z = 9; a = 1; b = 1; c = 1; d = 2;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193722 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]] (* A193723 *)

Formula

Write w(n,k) for the triangle at A193722. The triangle at A193723 is then given by w(n,n-k).
T(n,k) = T(n-1,k-1) + 3*T(n-1,k) with T(0,0)=T(1,1)=1 and T(1,0)=2. - Philippe Deléham, Oct 05 2011
From Philippe Deléham, Nov 14 2011: (Start)
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A011782(n), A025192(n), A002001(n), A005054(n), A052934(n), A055272(n), A055274(n), A055275(n), A052268(n), A055276(n), A196731(n) for x=-2,-1,0,1,2,3,4,5,6,7,8,9 respectively.
T(n,k) = Sum_{j>=0} T(n-1-j,k-1)*3^j.
G.f.: (1-x)/(1-(3+y)*x). (End)

A202453 Fibonacci self-fusion matrix, by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 5, 5, 6, 5, 5, 8, 8, 9, 9, 8, 8, 13, 13, 15, 15, 15, 13, 13, 21, 21, 24, 24, 24, 24, 21, 21, 34, 34, 39, 39, 40, 39, 39, 34, 34, 55, 55, 63, 63, 64, 64, 63, 63, 55, 55, 89, 89, 102, 102, 104, 104, 104, 102, 102, 89, 89, 144, 144, 165, 165
Offset: 1

Views

Author

Clark Kimberling, Dec 19 2011

Keywords

Comments

The Fibonacci self-fusion matrix, F, is the fusion P**Q, where P and Q are the lower and upper triangular Fibonacci matrices. See A193722 for the definition of fusion of triangular arrays.
Every term F(n,k) of F is a product of two Fibonacci numbers; indeed,
F(n,k)=F(n)*F(k+1) if k is even;
F(n,k)=F(n+1)*F(k) if k is odd.
antidiagonal sums: (1,2,6,12,...), A054454
diagonal (1,2,6,15,...), A001654
diagonal (1,3,9,24,...), A064831
diagonal (2,5,15,39,..), A059840
diagonal (3,8,24,63,..), A080097
diagonal (5,13,39,102,...), A080143
diagonal (8,21,63,165,...), A080144
principal submatrix sums, A202462
All the principal submatrices are invertible, and the terms in the inverses are in {-3,-2,-1,0,1,2,3}.

Examples

			Northwest corner:
1...1....2....3....5....8....13
1...2....3....5....8...13....21
2...3....6....9...15...24....39
3...5....9...15...24...39....63
5...8...15...24...40...64...104
		

Crossrefs

Cf. A000045, A202451, A202452, A202503 (Fibonacci fission array).

Programs

  • Mathematica
    n = 12;
    Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]];
    P = Transpose[Q]; F = P.Q;
    Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202452 as a sequence *)
    Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202451 as a sequence *)
    Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202453 as a sequence *)
    TableForm[Q]  (* A202451, upper tri. Fibonacci array *)
    TableForm[P]  (* A202452, lower tri. Fibonacci array *)
    TableForm[F]  (* A202453, Fibonacci fusion array *)
    TableForm[FactorInteger[F]]

Formula

Matrix product P*Q, where P, Q are the lower and upper triangular Fibonacci matrices, A202451 and A202452.

A193842 Triangular array: the fission of the polynomial sequence ((x+1)^n: n >= 0) by the polynomial sequence ((x+2)^n: n >= 0). (Fission is defined at Comments.)

Original entry on oeis.org

1, 1, 4, 1, 7, 13, 1, 10, 34, 40, 1, 13, 64, 142, 121, 1, 16, 103, 334, 547, 364, 1, 19, 151, 643, 1549, 2005, 1093, 1, 22, 208, 1096, 3478, 6652, 7108, 3280, 1, 25, 274, 1720, 6766, 17086, 27064, 24604, 9841, 1, 28, 349, 2542, 11926, 37384, 78322, 105796
Offset: 0

Views

Author

Clark Kimberling, Aug 07 2011

Keywords

Comments

Suppose that p = p(n)*x^n + p(n-1)*x^(n-1) + ... + p(1)*x + p(0) is a polynomial and that Q is a sequence of polynomials:
...
q(k,x) = t(k,0)*x^k + t(k,1)*x^(k-1) + ... + t(k,k-1)*x + t(k,k),
...
for k = 0, 1, 2, ... The Q-downstep of p is the polynomial given by
...
D(p) = p(n)*q(n-1,x) + p(n-1)*q(n-2,x) + ... + p(1)*q(0,x). (Note that p(0) does not appear. "Q-downstep" as just defined differs slightly from "Q-downstep" as defined for a different purpose at A193649.)
...
Now suppose that P = (p(n,x): n >= 0) and Q = (q(n,x): n >= 0) are sequences of polynomials, where n indicates degree. The fission of P by Q, denoted by P^^Q, is introduced here as the sequence W = (w(n,x): n >= 0) of polynomials defined by w(0,x) = 1 and w(n,x) = D(p(n+1,x)).
...
Strictly speaking, ^^ is an operation on sequences of polynomials. However, if P and Q are regarded as numerical triangles (of coefficients of polynomials), then ^^ can be regarded as an operation on numerical triangles. In this case, row n of P^^Q, for n > 0, is given by the matrix product P(n+1)*QQ(n), where P(n+1) =(p(n+1,n+1), p(n+1,n), ..., p(n+1,2), p(n+1,1)) and QQ(n) is the (n+1)-by-(n+1) matrix given by
...
q(n,0) .. q(n,1)............. q(n,n-1) .... q(n,n)
0 ....... q(n-1,0)........... q(n-1,n-2)... q(n-1,n-1)
0 ....... 0.................. q(n-2,n-3) .. q(n-2,n-2)
...
0 ....... 0.................. q(1,0) ...... q(1,1)
0 ....... 0 ................. 0 ........... q(0,0).
Here, the polynomial q(k,x) is taken to be
q(k,0)*x^k + q(k,1)x^(k-1) + ... + q(k,k)*x + q(k,k);
i.e., "q" is used instead of "t".
...
Example: Let p(n,x) = (x+1)^n and q(n,x) = (x+2)^n. Then
...
w(0,x) = 1 by the definition of W,
w(1,x) = D(p(2,x)) = 1*(x+2) + 2*1 = x + 4,
w(2,x) = D(p(3,x)) = 1*(x^2+4*x+4) + 3*(x+2) + 3*1 = x^2 + 7*x + 13,
w(3,x) = D(p(4,x)) = 1*(x^3+6*x^2+12*x+8) + 4*(x^2+4x+4) + 6*(x+2) + 4*1 = x^3 + 10*x^2 + 34*x + 40.
...
From these first 4 polynomials in the sequence P^^Q, we can write the first 4 rows of P^^Q when P, Q, and P^^Q are regarded as triangles:
1
1...4
1...7....13
1...10...34...40
...
In the following examples, r(P^^Q) is the mirror of P^^Q, obtained by reversing the rows of P^^Q. Let u denote the polynomial x^n + x^(n-1) + ... + x + 1.
...
..P........Q...........P^^Q........r(P^^Q)
(x+1)^n....(x+2)^n.....A193842.....A193843
(x+1)^n....(x+1)^n.....A193844.....A193845
(x+2)^n....(x+1)^n.....A193846.....A193847
(2x+1)^n...(x+1)^n.....A193856.....A193857
(x+1)^n....(2x+1)^n....A193858.....A193859
(x+1)^n.......u........A054143.....A104709
..u........(x+1)^n.....A074909.....A074909
..u...........u........A002260.....A004736
(x+2)^n.......u........A193850.....A193851
..u.........(x+2)^n....A193844.....A193845
(2x+1)^n......u........A193860.....A193861
..u.........(2x+1)^n...A115068.....A193862
...
Regarding A193842,
col 1 ...... A000012
col 2 ...... A016777
col 3 ...... A081271
w(n,n) ..... A003462
w(n,n-1) ... A014915

Examples

			First six rows, for 0 <= k <= n and 0 <= n <= 5:
  1
  1...4
  1...7....13
  1...10...34....40
  1...13...64....142...121
  1...16...103...334...547...364
		

Crossrefs

Cf. A193722 (fusion of P by Q), A193649 (Q-residue), A193843 (mirror of A193842).

Programs

  • Magma
    [ (&+[3^(k-j)*Binomial(n-j,k-j): j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
  • Maple
    fission := proc(p, q, n) local d, k;
    p(n+1,0)*q(n,x)+add(coeff(p(n+1,x),x^k)*q(n-k,x), k=1..n);
    seq(coeff(%,x,n-k), k=0..n) end:
    A193842_row := n -> fission((n,x) -> (x+1)^n, (n,x) -> (x+2)^n, n);
    for n from 0 to 5 do A193842_row(n) od; # Peter Luschny, Jul 23 2014
    # Alternatively:
    p := (n,x) -> add(x^k*(1+3*x)^(n-k),k=0..n): for n from 0 to 7 do [n], PolynomialTools:-CoefficientList(p(n,x), x) od; # Peter Luschny, Jun 18 2017
  • Mathematica
    (* First program *)
    z = 10;
    p[n_, x_] := (x + 1)^n;
    q[n_, x_] := (x + 2)^n
    p1[n_, k_] := Coefficient[p[n, x], x^k];
    p1[n_, 0] := p[n, x] /. x -> 0;
    d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
    h[n_] := CoefficientList[d[n, x], {x}]
    TableForm[Table[Reverse[h[n]], {n, 0, z}]]
    Flatten[Table[Reverse[h[n]], {n, -1, z}]]  (* A193842 *)
    TableForm[Table[h[n], {n, 0, z}]]  (* A193843 *)
    Flatten[Table[h[n], {n, -1, z}]]
    (* Second program *)
    Table[SeriesCoefficient[((x+3)^(n+1) -1)/(x+2), {x,0,n-k}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
  • PARI
    T(n,k) = sum(j=0,k, 3^(k-j)*binomial(n-j,k-j)); \\ G. C. Greubel, Feb 18 2020
    
  • Sage
    from mpmath import mp, hyp2f1
    mp.dps = 100; mp.pretty = True
    def T(n,k):
        return 3^k*binomial(n,k)*hyp2f1(1,-k,-n,1/3)-0^(n-k)//2
    for n in range(7):
        print([int(T(n,k)) for k in (0..n)]) # Peter Luschny, Jul 23 2014
    
  • Sage
    # Second program using the 'fission' operation.
    def fission(p, q, n):
        F = p(n+1,0)*q(n,x)+add(expand(p(n+1,x)).coefficient(x,k)*q(n-k,x) for k in (1..n))
        return [expand(F).coefficient(x,n-k) for k in (0..n)]
    A193842_row = lambda k: fission(lambda n,x: (x+1)^n, lambda n,x: (x+2)^n, k)
    for n in range(7): A193842_row(n) # Peter Luschny, Jul 23 2014
    

Formula

From Peter Bala, Jul 16 2013: (Start)
T(n,k) = Sum_{i = 0..k} 3^(k-i)*binomial(n-i,k-i).
O.g.f.: 1/((1 - x*t)*(1 - (1 + 3*x)*t)) = 1 + (1 + 4*x)*t + (1 + 7*x + 13*x^2)*t^2 + ....
The n-th row polynomial is R(n,x) = (1/(2*x + 1))*((3*x + 1)^(n+1) - x^(n+1)). (End)
T(n,k) = T(n-1,k) + 4*T(n-1,k-1) - T(n-2,k-1) - 3*T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 4, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 17 2014
T(n,k) = 3^k * C(n,k) * hyp2F1(1, -k, -n, 1/3) with or without the additional term -0^(n-k)/2 depending on the exact definition of the hypergeometric function used. Compare formulas 15.2.5 and 15.2.6 in the DLMF reference. - Peter Luschny, Jul 23 2014

Extensions

Name and Comments edited by Petros Hadjicostas, Jun 05 2020

A081277 Square array of unsigned coefficients of Chebyshev polynomials of the first kind.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 8, 4, 1, 7, 18, 20, 8, 1, 9, 32, 56, 48, 16, 1, 11, 50, 120, 160, 112, 32, 1, 13, 72, 220, 400, 432, 256, 64, 1, 15, 98, 364, 840, 1232, 1120, 576, 128, 1, 17, 128, 560, 1568, 2912, 3584, 2816, 1280, 256, 1, 19, 162, 816, 2688, 6048, 9408, 9984, 6912
Offset: 0

Views

Author

Paul Barry, Mar 16 2003

Keywords

Comments

Formatted as a triangular array, this is [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] (see construction in A084938 ). - Philippe Deléham, Aug 09 2005
Antidiagonal sums are in A025192. - Philippe Deléham, Dec 04 2006
Binomial transform of n-th row of the triangle (followed by zeros) = n-th row of the A142978 array and n-th column of triangle A104698. - Gary W. Adamson, Jul 17 2008
When formatted as a triangle, A038763=fusion of polynomial sequences (x+1)^n and (x+1)^n; see A193722 for the definition of fusion of two polynomial sequences or triangular arrays. Row n of A038763, as a triangle, consists of coefficients of the product (x+1)*(x+2)^n. - Clark Kimberling, Aug 04 2011

Examples

			Rows begin
  1, 1,  2,   4,   8, ...
  1, 3,  8,  20,  48, ...
  1, 5, 18,  56, 160, ...
  1, 7, 32, 120, 400, ...
  1, 9, 50, 220, 840, ...
  ...
As a triangle:
  1;
  1,  1;
  1,  3,  2;
  1,  5,  8,  4;
  1,  7, 18, 20,  8;
		

Crossrefs

Cf. A079628.
Cf. A167580 and A167591. - Johannes W. Meijer, Nov 23 2009
Cf. A053120 (antidiagonals give signed version) and A124182 (skewed version). - Mathias Zechmeister, Jul 26 2022

Programs

  • Mathematica
    (* Program generates triangle A081277 as the self-fusion of Pascal's triangle *)
    z = 8; a = 1; b = 1; c = 1; d = 1;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A081277 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]] (* abs val of A118800 *)
    Factor[w[6, x]]
    (* Clark Kimberling, Aug 04 2011 *)

Formula

T(n, k) = (n+2k)*binomial(n+k-1, k-1)*2^(n-1)/k, k > 0.
T(n, 0) defined by g.f. (1-x)/(1-2x). Other rows are defined by (1-x)/(1-2x)^n.
T(n, 0) = 0 if n < 0, T(0, k) = 0 if k < 0, T(0, 0) = T(1, 0) = 1, T(n, k) = T(n, k-1) + 2*T(n-1, k); for example, 160 = 48 + 2*56 for n = 4 and k = 2. -Philippe Deléham, Aug 12 2005
G.f. of the triangular interpretation: (-1+x*y)/(-1+2*x*y+x). - R. J. Mathar, Aug 11 2015

A193649 Q-residue of the (n+1)st Fibonacci polynomial, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)

Original entry on oeis.org

1, 1, 3, 5, 15, 33, 91, 221, 583, 1465, 3795, 9653, 24831, 63441, 162763, 416525, 1067575, 2733673, 7003971, 17938661, 45954543, 117709185, 301527355, 772364093, 1978473511
Offset: 0

Views

Author

Clark Kimberling, Aug 02 2011

Keywords

Comments

Suppose that p=p(0)*x^n+p(1)*x^(n-1)+...+p(n-1)*x+p(n) is a polynomial of positive degree and that Q is a sequence of polynomials: q(k,x)=t(k,0)*x^k+t(k,1)*x^(k-1)+...+t(k,k-1)*x+t(k,k), for k=0,1,2,... The Q-downstep of p is the polynomial given by D(p)=p(0)*q(n-1,x)+p(1)*q(n-2,x)+...+p(n-1)*q(0,x)+p(n).
Since degree(D(p))
Example: let p(x)=2*x^3+3*x^2+4*x+5 and q(k,x)=(x+1)^k.
D(p)=2(x+1)^2+3(x+1)+4(1)+5=2x^2+7x+14
D(D(p))=2(x+1)+7(1)+14=2x+23
D(D(D(p)))=2(1)+23=25;
the Q-residue of p is 25.
We may regard the sequence Q of polynomials as the triangular array formed by coefficients:
t(0,0)
t(1,0)....t(1,1)
t(2,0)....t(2,1)....t(2,2)
t(3,0)....t(3,1)....t(3,2)....t(3,3)
and regard p as the vector (p(0),p(1),...,p(n)). If P is a sequence of polynomials [or triangular array having (row n)=(p(0),p(1),...,p(n))], then the Q-residues of the polynomials form a numerical sequence.
Following are examples in which Q is the triangle given by t(i,j)=1 for 0<=i<=j:
Q.....P...................Q-residue of P
1.....1...................A000079, 2^n
1....(x+1)^n..............A007051, (1+3^n)/2
1....(x+2)^n..............A034478, (1+5^n)/2
1....(x+3)^n..............A034494, (1+7^n)/2
1....(2x+1)^n.............A007582
1....(3x+1)^n.............A081186
1....(2x+3)^n.............A081342
1....(3x+2)^n.............A081336
1.....A040310.............A193649
1....(x+1)^n+(x-1)^n)/2...A122983
1....(x+2)(x+1)^(n-1).....A057198
1....(1,2,3,4,...,n)......A002064
1....(1,1,2,3,4,...,n)....A048495
1....(n,n+1,...,2n).......A087323
1....(n+1,n+2,...,2n+1)...A099035
1....p(n,k)=(2^(n-k))*3^k.A085350
1....p(n,k)=(3^(n-k))*2^k.A090040
1....A008288 (Delannoy)...A193653
1....A054142..............A101265
1....cyclotomic...........A193650
1....(x+1)(x+2)...(x+n)...A193651
1....A114525..............A193662
More examples:
Q...........P.............Q-residue of P
(x+1)^n...(x+1)^n.........A000110, Bell numbers
(x+1)^n...(x+2)^n.........A126390
(x+2)^n...(x+1)^n.........A028361
(x+2)^n...(x+2)^n.........A126443
(x+1)^n.....1.............A005001
(x+2)^n.....1.............A193660
A094727.....1.............A193657
(k+1).....(k+1)...........A001906 (even-ind. Fib. nos.)
(k+1).....(x+1)^n.........A112091
(x+1)^n...(k+1)...........A029761
(k+1)......A049310........A193663
(In these last four, (k+1) represents the triangle t(n,k)=k+1, 0<=k<=n.)
A051162...(x+1)^n.........A193658
A094727...(x+1)^n.........A193659
A049310...(x+1)^n.........A193664
Changing the notation slightly leads to the Mathematica program below and the following formulation for the Q-downstep of p: first, write t(n,k) as q(n,k). Define r(k)=Sum{q(k-1,i)*r(k-1-i) : i=0,1,...,k-1} Then row n of D(p) is given by v(n)=Sum{p(n,k)*r(n-k) : k=0,1,...,n}.

Examples

			First five rows of Q, coefficients of Fibonacci polynomials (A049310):
1
1...0
1...0...1
1...0...2...0
1...0...3...0...1
To obtain a(4)=15, downstep four times:
D(x^4+3*x^2+1)=(x^3+x^2+x+1)+3(x+1)+1: (1,1,4,5) [coefficients]
DD(x^4+3*x^2+1)=D(1,1,4,5)=(1,2,11)
DDD(x^4+3*x^2+1)=D(1,2,11)=(1,14)
DDDD(x^4+3*x^2+1)=D(1,14)=15.
		

Crossrefs

Cf. A192872 (polynomial reduction), A193091 (polynomial augmentation), A193722 (the upstep operation and fusion of polynomial sequences or triangular arrays).

Programs

  • Mathematica
    q[n_, k_] := 1;
    r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}];
    f[n_, x_] := Fibonacci[n + 1, x];
    p[n_, k_] := Coefficient[f[n, x], x, k]; (* A049310 *)
    v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
    Table[v[n], {n, 0, 24}]    (* A193649 *)
    TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
    Table[r[k], {k, 0, 8}]  (* 2^k *)
    TableForm[Table[p[n, k], {n, 0, 6}, {k, 0, n}]]

Formula

Conjecture: G.f.: -(1+x)*(2*x-1) / ( (x-1)*(4*x^2+x-1) ). - R. J. Mathar, Feb 19 2015

A118800 Triangle read by rows: T satisfies the matrix products: C*T*C = T^-1 and T*C*T = C^-1, where C is Pascal's triangle.

Original entry on oeis.org

1, 1, -1, 2, -3, 1, 4, -8, 5, -1, 8, -20, 18, -7, 1, 16, -48, 56, -32, 9, -1, 32, -112, 160, -120, 50, -11, 1, 64, -256, 432, -400, 220, -72, 13, -1, 128, -576, 1120, -1232, 840, -364, 98, -15, 1, 256, -1280, 2816, -3584, 2912, -1568, 560, -128, 17, -1, 512, -2816, 6912, -9984, 9408, -6048, 2688, -816, 162, -19, 1
Offset: 0

Author

Paul D. Hanna, May 02 2006

Keywords

Comments

The matrix square, T^2, consists of columns that are all the same.
Matrix inverse is triangle A118801. Row sums form {0^n, n>=0}.
Unsigned row sums equal A025192(n) = 2*3^(n-1), n>=1.
Row squared sums equal A051708.
Antidiagonal sums equals all 1's.
Unsigned antidiagonal sums form A078057 (with offset).
Antidiagonal squared sums form A002002(n) = Sum_{k=0..n-1} C(n,k+1)*C(n+k,k), n>=1.
From Paul Barry, Nov 10 2008: (Start)
T is [1,1,0,0,0,...] DELTA [ -1,0,0,0,0,...] or C(1,n) DELTA -C(0,n). (DELTA defined in A084938).
The positive matrix T_p is [1,1,0,0,0,...] DELTA [1,0,0,0,0,...]. T_p*C^-1 is
[0,1,0,0,0,....] DELTA [1,0,0,0,0,...] which is C(n-1,k-1) for n,k>=1. (End)
The triangle formed by deleting the minus signs is the mirror of the self-fusion of Pascal's triangle; see Comments at A081277 and A193722. - Clark Kimberling, Aug 04 2011
Riordan array ( (1 - x)/(1 - 2*x), -x/(1 - 2*x) ). Cf. A209149. The matrix square is the Riordan array ( (1 - x)^2/(1 - 2*x), x ), which belongs to the Appell subgroup of the Riordan group. See the Example section below. - Peter Bala, Jul 17 2013
From Peter Bala, Feb 23 2019: (Start)
There is a 1-parameter family of solutions to the simultaneous equations C*T*C = T^-1 and T*C*T = C^-1, where C is Pascal's triangle. Let T(k) denote the Riordan array ( (1 - k*x)/(1 - (k + 1)*x), -x/(1 - (k + 1)*x) ) so that T(1) = T. Then C*T(k)*C = T(k)^-1 and T(k)*C*T(k) = C^-1, for arbitrary k. For arbitrary m, the Riordan arrays (T(k)*C^m)^2 and (C^m*T(k))^2 both belong to the Appell subgroup of the Riordan group.
More generally, given a fixed m, we can ask for a lower triangular array X solving the simultaneous equations (C^m)*X*(C^m) = X^-1 and X*(C^m)*X = C^(-m). A 1-parameter family of solutions is given by the Riordan arrays X = ( (1 - m*k*x)/(1 - m*(k + 1)*x), -x/(1 - m*(k + 1)*x) ). The Riordan arrays X^2 , (X*C^n)^2 and (C^n*X)^2, for arbitrary n, all belong to the Appell subgroup of the Riordan group. (End)

Examples

			Triangle begins:
     1;
     1,    -1;
     2,    -3,     1;
     4,    -8,     5,     -1;
     8,   -20,    18,     -7,     1;
    16,   -48,    56,    -32,     9,     -1;
    32,  -112,   160,   -120,    50,    -11,     1;
    64,  -256,   432,   -400,   220,    -72,    13,    -1;
   128,  -576,  1120,  -1232,   840,   -364,    98,   -15,    1;
   256, -1280,  2816,  -3584,  2912,  -1568,   560,  -128,   17,   -1;
   512, -2816,  6912,  -9984,  9408,  -6048,  2688,  -816,  162,  -19,  1;
  1024, -6144, 16640, -26880, 28800, -21504, 11424, -4320, 1140, -200, 21, -1;
  ...
The matrix square, T^2, equals:
   1;
   0,  1;
   1,  0,  1;
   2,  1,  0,  1;
   4,  2,  1,  0,  1;
   8,  4,  2,  1,  0,  1;
  16,  8,  4,  2,  1,  0,  1;
  32, 16,  8,  4,  2,  1,  0,  1;
  64, 32, 16,  8,  4,  2,  1,  0,  1; ...
where all columns are the same.
		

Crossrefs

Cf. A118801 (inverse), A025192 (unsigned row sums), A051708 (row squared sums), A078057 (unsigned antidiagonal sums), A002002 (antidiagonal squared sums).

Programs

  • Mathematica
    (* This program generates A118800 as the mirror of the self-fusion of Pascal's triangle. *)
    z = 8; a = 1; b = 1; c = 1; d = 1;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n;
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, 0];
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, _] = 1;
    g[n_] := CoefficientList[w[n, -x], x];
    TableForm[Table[Reverse[Abs@g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[Abs@g[n]], {n, -1, z}]] (* A081277 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]] (* A118800 *)
    (* Clark Kimberling, Aug 04 2011 *)
    T[ n_, k_] := If[ n<0 || k<0, 0, (-1)^k 2^(n-k) (Binomial[ n, k] + Binomial[ n-1, n-k]) / 2]; (* Michael Somos, Nov 25 2016 *)
  • PARI
    {T(n,k)=if(n==0&k==0,1,(-1)^k*2^(n-k)*(binomial(n,k)+binomial(n-1,k-1))/2)}
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    /* Chebyshev Polynomials as Antidiagonals: */
    {T(n,k)=local(Ox=x*O(x^(2*k))); polcoeff(((1+sqrt(1-x^2+Ox))^(n+k)+(1-sqrt(1-x^2+Ox))^(n+k))/2,2*k,x)}
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • Sage
    # uses[riordan_square from A321620]
    # Computes the unsigned triangle.
    riordan_square((1-x)/(1-2*x), 8) # Peter Luschny, Jan 03 2019

Formula

T(n,k) = (-1)^k * 2^(n-k) * ( C(n,k) + C(n-1,k-1) )/2 for n>=k>=0 with T(0,0) = 1. Antidiagonals form the coefficients of Chebyshev polynomials: T(n,k) = [x^(2*n)] [(1+sqrt(1-x^2))^(n+k) + (1-sqrt(1-x^2))^(n+k)]/2.
Rows of the triangle are generated by taking successive iterates of (A135387)^n * [1, 1, 0, 0, 0, ...]. - Gary W. Adamson, Dec 09 2007
O.g.f.: (1 - t)/(1 + t*(x - 2)) = 1 + (1 - x)*t + (2 - 3*x + x^2)^t^2 + (4 - 8*x + 5*x^2 - x^3)*t^3 + .... Row polynomial R(n,x) = (1 - x)*(2 - x)^(n-1) for n >= 1. - Peter Bala, Jul 17 2013
T(n,k)=2*T(n-1,k)-T(n-1,k-1) with T(0,0)=T(1,0)=1, T(1,1)=-1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 25 2013
G.f. for row n (n>=1): Sum_{k=0..n} T(n,k)*x^k = (1-x)*(2-x)^(n-1). - Philippe Deléham, Nov 25 2013
From Tom Copeland, Nov 15 2016: (Start)
E.g.f. is [1 + (1-x)e^((2-x)t)]/(2-x), so the row polynomials are p_n(x) = (1-q,(x))^n, umbrally, where (q.(x))^k = q_k(x) are the row polynomials of A239473, or, equivalently, T = M*A239473, where M is the inverse Pascal matrix C^(-1) = A130595 with the odd rows negated, i.e., M(n,k) = (-1)^n C^(-1)(n,k) with e.g.f. exp[(1-x)t]. Cf. A200139: A200139(n,k) = (-1)^k* A118800(n,k).
TCT = C^(-1) = A130595 and A239473 = A000012*C^(-1) = S*C^(-1) imply (M*S)^2 = Identity matrix, i.e., M*S = (M*S)^(-1) = S^(-1)*M^(-1) = A167374*M^(-1). Note that M = M^(-1). Cf. A097805. (End)

A038763 Triangular matrix arising in enumeration of catafusenes, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 7, 15, 9, 1, 10, 36, 54, 27, 1, 13, 66, 162, 189, 81, 1, 16, 105, 360, 675, 648, 243, 1, 19, 153, 675, 1755, 2673, 2187, 729, 1, 22, 210, 1134, 3780, 7938, 10206, 7290, 2187, 1, 25, 276, 1764, 7182, 19278, 34020, 37908, 24057, 6561, 1, 28, 351, 2592, 12474, 40824, 91854, 139968, 137781, 78732, 19683
Offset: 0

Author

N. J. A. Sloane, May 03 2000

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 10 2005
Triangle read by rows, n-th row = X^(n-1) * [1, 1, 0, 0, 0, ...] where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (3,3,3,...) in the subdiagonal; given row 0 = 1. - Gary W. Adamson, Jul 19 2008
Fusion of polynomial sequences P and Q given by p(n,x)=(x+2)^n and q(n,x)=(2x+1)^n; see A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. - Clark Kimberling, Aug 04 2011

Examples

			Triangle begins:
  1;
  1,  1;
  1,  4,   3;
  1,  7,  15,   9;
  1, 10,  36,  54,   27;
  1, 13,  66, 162,  189,   81;
  1, 16, 105, 360,  675,  648,  243;
  1, 19, 153, 675, 1755, 2673, 2187, 729;
		

Programs

  • Magma
    A038763:= func< n,k | n eq 0 select 1 else 3^(k-1)*(3*n-2*k)*Binomial(n,k)/n >;
    [A038763(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 27 2023
    
  • Mathematica
    A038763[n_,k_]:= If[n==0, 1, 3^(k-1)*(3*n-2*k)*Binomial[n,k]/n];
    Table[A038763[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 27 2023 *)
  • PARI
    T(n,k) = if ((n<0) || (k<0), return(0)); if ((n==0) && (k==0), return(1)); if (n==1, if (k<=1, return(1))); T(n-1,k) + 3*T(n-1,k-1);
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", "))); \\ Michel Marcus, Jul 25 2023
    
  • SageMath
    def A038763(n,k): return 1 if (n==0) else 3^(k-1)*(3*n-2*k)*binomial(n,k)/n
    flatten([[A038763(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 27 2023

Formula

T(n, 0)=1; T(1, 1)=1; T(n, k)=0 for k>n; T(n, k) = T(n-1, k-1)*3 + T(n-1, k) for n >= 2.
Sum_{k=0..n} T(n,k) = A081294(n). - Philippe Deléham, Sep 22 2006
T(n, k) = A136158(n, n-k). - Philippe Deléham, Dec 17 2007
G.f.: (1-2*x*y)/(1-(3*y+1)*x). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 27 2023: (Start)
T(n, 0) = A000012(n).
T(n, 1) = A016777(n-1).
T(n, 2) = A062741(n-1).
T(n, 3) = 9*A002411(n-2).
T(n, 4) = 27*A001296(n-3).
T(n, 5) = 81*A051836(n-4).
T(n, n) = A133494(n).
T(n, n-1) = A006234(n+2).
T(n, n-2) = A080420(n-2).
T(n, n-3) = A080421(n-3).
T(n, n-4) = A080422(n-4).
T(n, n-5) = A080423(n-5).
T(2*n, n) = 4*A098399(n-1) + (2/3)*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A006138(n-1) + (2/3)*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A110523(n-1) + (4/3)*[n=0]. (End)

Extensions

More terms from Michel Marcus, Jul 25 2023

A193815 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x) = x^n + x^(n-1) + ... + x+1 and q(n,x)=(x+1)^n.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 4, 6, 3, 1, 5, 10, 10, 4, 1, 6, 15, 20, 15, 5, 1, 7, 21, 35, 35, 21, 6, 1, 8, 28, 56, 70, 56, 28, 7, 1, 9, 36, 84, 126, 126, 84, 36, 8, 1, 10, 45, 120, 210, 252, 210, 120, 45, 9, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 10, 1, 12, 66, 220, 495
Offset: 0

Author

Clark Kimberling, Aug 06 2011

Keywords

Comments

See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
Triangle T(n,k), read by rows, given by (1,0,-1,1,0,0,0,0,0,0,0,...) DELTA (1,1,-1,1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 08 2011
Row sums are A095121. - Philippe Deléham, Nov 24 2011

Examples

			First six rows:
  1;
  1,  1;
  1,  3,  2;
  1,  4,  6,  3;
  1,  5, 10, 10,  4;
  1,  6, 15, 20, 15,  5;
		

Crossrefs

Programs

  • Mathematica
    z = 10; c = 1; d = 1;
    p[0, x_] := 1
    p[n_, x_] := x*p[n - 1, x] + 1; p[n_, 0] := p[n, x] /. x -> 0;
    q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193815 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]   (* A153861 *)
    t[0, 0] = t[1, 0] = t[1, 1] = t[2, 0] = 1; t[2, 1] = 3; t[2, 2] = 2; t[n_, k_] /; k<0 || k>n = 0; t[n_, k_] := t[n, k] = t[n-1, k]+2*t[n-1, k-1]-t[n-2, k-1]-t[n-2, k-2]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 16 2013, after Philippe Deléham *)

Formula

T(n,k) = A153861(n,n-k). - Philippe Deléham, Oct 08 2011
G.f.: (1-y*x+y*(y+1)*x^2)/((1-y*x)*(1-(y+1)*x)). - Philippe Deléham, Nov 24 2011
Sum_{k=0..n} T(n,k)*x^k = (x+1)*((x+1)^n - x^n) + 0^n. - Philippe Deléham, Nov 24 2011
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(0,0)=T(1,0)=T(1,1)=T(2,0)=1, T(2,1)=3, T(2,2)=2, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Dec 15 2013

A115262 Correlation triangle for n+1.

Original entry on oeis.org

1, 2, 2, 3, 5, 3, 4, 8, 8, 4, 5, 11, 14, 11, 5, 6, 14, 20, 20, 14, 6, 7, 17, 26, 30, 26, 17, 7, 8, 20, 32, 40, 40, 32, 20, 8, 9, 23, 38, 50, 55, 50, 38, 23, 9, 10, 26, 44, 60, 70, 70, 60, 44, 26, 10, 11, 29, 50, 70, 85, 91, 85, 70, 50, 29, 11
Offset: 0

Author

Paul Barry, Jan 18 2006

Keywords

Comments

This sequence (formatted as a square array) gives the counts of all possible squares in an m X n rectangle. For example, 11 = 8 (1 X 1 squares) + 3 (2 X 2 square) in 4 X 2 rectangle. - Philippe Deléham, Nov 26 2009
From Clark Kimberling, Feb 07 2011: (Start)
Also the accumulation array of min{n,k}, when formatted as a rectangle.
This is the accumulation array of the array M=A003783 given by M(n,k)=min{n,k}; see A144112 for the definition of accumulation array.
The accumulation array of A115262 is A185957. (End)
From Clark Kimberling, Dec 22 2011: (Start)
As a square matrix, A115262 is the self-fusion matrix of A000027 (1,2,3,4,...). See A193722 for the definition of fusion and A202673 for characteristic polynomials associated with A115622. (End)

Examples

			Triangle begins
  1;
  2,  2;
  3,  5,  3;
  4,  8,  8,  4;
  5, 11, 14, 11,  5;
  6, 14, 20, 20, 14,  6;
  ...
When formatted as a square matrix:
  1,  2,  3,  4,  5, ...
  2,  5,  8, 11, 14, ...
  3,  8, 14, 20, 26, ...
  4, 11, 20, 30, 40, ...
  5, 14, 26, 40, 55, ...
  ...
		

Crossrefs

For the triangular version: row sums are A001752. Diagonal sums are A097701. T(2n,n) is A000330(n+1).
Diagonals (1,5,...): A000330 (square pyramidal numbers),
diagonals (2,8,...): A007290,
diagonals (3,11,...): A051925,
diagonals (4,14,...): A159920,
antidiagonal sums: A001752.

Programs

  • Mathematica
    U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[k, {k, 1, 12}]];
    L = Transpose[U]; M = L.U; TableForm[M]
    m[i_, j_] := M[[i]][[j]];
    Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
    (* Clark Kimberling, Dec 22 2011 *)

Formula

Let f(m,n) = m*(m-1)*(3*n-m-1)/6. This array is (with a different offset) the infinite square array read by antidiagonals U(m,n) = f(n,m) if m < n, U(m,n) = f(m,n) if m <= n. See A271916. - N. J. A. Sloane, Apr 26 2016
G.f.: 1/((1-x)^2*(1-x*y)^2*(1-x^2*y)).
Number triangle T(n, k) = Sum_{j=0..n} [j<=k]*(k-j+1)[j<=n-k]*(n-k-j+1).
T(2n,n) - T(2n,n+1) = n+1.

A196661 Expansion of g.f. (1-2*x)/(1-7*x).

Original entry on oeis.org

1, 5, 35, 245, 1715, 12005, 84035, 588245, 4117715, 28824005, 201768035, 1412376245, 9886633715, 69206436005, 484445052035, 3391115364245, 23737807549715, 166164652848005, 1163152569936035, 8142067989552245, 56994475926865715, 398961331488060005
Offset: 0

Author

Philippe Deléham, Oct 05 2011

Keywords

Crossrefs

Cf. A002001, A193577 (which is the same except for the initial 1), A193722.

Programs

Formula

a(0) = 1, a(n) = 5*7^(n-1) for n>0.
a(n) = Sum_{k=0..n} A193722(n,k)*2^k.
From Elmo R. Oliveira, Mar 18 2025: (Start)
E.g.f.: (5*exp(7*x) + 2)/7.
a(n) = 7*a(n-1). (End)
Showing 1-10 of 92 results. Next