cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A000012 The simplest sequence of positive numbers: the all 1's sequence.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, May 16 1994

Keywords

Comments

Number of ways of writing n as a product of primes.
Number of ways of writing n as a sum of distinct powers of 2.
Continued fraction for golden ratio A001622.
Partial sums of A000007 (characteristic function of 0). - Jeremy Gardiner, Sep 08 2002
An example of an infinite sequence of positive integers whose distinct pairwise concatenations are all primes! - Don Reble, Apr 17 2005
Binomial transform of A000007; inverse binomial transform of A000079. - Philippe Deléham, Jul 07 2005
A063524(a(n)) = 1. - Reinhard Zumkeller, Oct 11 2008
For n >= 0, let M(n) be the matrix with first row = (n n+1) and 2nd row = (n+1 n+2). Then a(n) = absolute value of det(M(n)). - K.V.Iyer, Apr 11 2009
The partial sums give the natural numbers (A000027). - Daniel Forgues, May 08 2009
From Enrique Pérez Herrero, Sep 04 2009: (Start)
a(n) is also tau_1(n) where tau_2(n) is A000005.
a(n) is a completely multiplicative arithmetical function.
a(n) is both squarefree and a perfect square. See A005117 and A000290. (End)
Also smallest divisor of n. - Juri-Stepan Gerasimov, Sep 07 2009
Also decimal expansion of 1/9. - Enrique Pérez Herrero, Sep 18 2009; corrected by Klaus Brockhaus, Apr 02 2010
a(n) is also the number of complete graphs on n nodes. - Pablo Chavez (pchavez(AT)cmu.edu), Sep 15 2009
Totally multiplicative sequence with a(p) = 1 for prime p. Totally multiplicative sequence with a(p) = a(p-1) for prime p. - Jaroslav Krizek, Oct 18 2009
n-th prime minus phi(prime(n)); number of divisors of n-th prime minus number of perfect partitions of n-th prime; the number of perfect partitions of n-th prime number; the number of perfect partitions of n-th noncomposite number. - Juri-Stepan Gerasimov, Oct 26 2009
For all n>0, the sequence of limit values for a(n) = n!*Sum_{k>=n} k/(k+1)!. Also, a(n) = n^0. - Harlan J. Brothers, Nov 01 2009
a(n) is also the number of 0-regular graphs on n vertices. - Jason Kimberley, Nov 07 2009
Differences between consecutive n. - Juri-Stepan Gerasimov, Dec 05 2009
From Matthew Vandermast, Oct 31 2010: (Start)
1) When sequence is read as a regular triangular array, T(n,k) is the coefficient of the k-th power in the expansion of (x^(n+1)-1)/(x-1).
2) Sequence can also be read as a uninomial array with rows of length 1, analogous to arrays of binomial, trinomial, etc., coefficients. In a q-nomial array, T(n,k) is the coefficient of the k-th power in the expansion of ((x^q -1)/(x-1))^n, and row n has a sum of q^n and a length of (q-1)*n + 1. (End)
The number of maximal self-avoiding walks from the NW to SW corners of a 2 X n grid.
When considered as a rectangular array, A000012 is a member of the chain of accumulation arrays that includes the multiplication table A003991 of the positive integers. The chain is ... < A185906 < A000007 < A000012 < A003991 < A098358 < A185904 < A185905 < ... (See A144112 for the definition of accumulation array.) - Clark Kimberling, Feb 06 2011
a(n) = A007310(n+1) (Modd 3) := A193680(A007310(n+1)), n>=0. For general Modd n (not to be confused with mod n) see a comment on A203571. The nonnegative members of the three residue classes Modd 3, called [0], [1], and [2], are shown in the array A088520, if there the third row is taken as class [0] after inclusion of 0. - Wolfdieter Lang, Feb 09 2012
Let M = Pascal's triangle without 1's (A014410) and V = a variant of the Bernoulli numbers A027641 but starting [1/2, 1/6, 0, -1/30, ...]. Then M*V = [1, 1, 1, 1, ...]. - Gary W. Adamson, Mar 05 2012
As a lower triangular array, T is an example of the fundamental generalized factorial matrices of A133314. Multiplying each n-th diagonal by t^n gives M(t) = I/(I-t*S) = I + t*S + (t*S)^2 + ... where S is the shift operator A129184, and T = M(1). The inverse of M(t) is obtained by multiplying the first subdiagonal of T by -t and the other subdiagonals by zero, so A167374 is the inverse of T. Multiplying by t^n/n! gives exp(t*S) with inverse exp(-t*S). - Tom Copeland, Nov 10 2012
The original definition of the meter was one ten-millionth of the distance from the Earth's equator to the North Pole. According to that historical definition, the length of one degree of latitude, that is, 60 nautical miles, would be exactly 111111.111... meters. - Jean-François Alcover, Jun 02 2013
Deficiency of 2^n. - Omar E. Pol, Jan 30 2014
Consider n >= 1 nonintersecting spheres each with surface area S. Define point p on sphere S_i to be a "public point" if and only if there exists a point q on sphere S_j, j != i, such that line segment pq INTERSECT S_i = {p} and pq INTERSECT S_j = {q}; otherwise, p is a "private point". The total surface area composed of exactly all private points on all n spheres is a(n)*S = S. ("The Private Planets Problem" in Zeitz.) - Rick L. Shepherd, May 29 2014
For n>0, digital roots of centered 9-gonal numbers (A060544). - Colin Barker, Jan 30 2015
Product of nonzero digits in base-2 representation of n. - Franklin T. Adams-Watters, May 16 2016
Alternating row sums of triangle A104684. - Wolfdieter Lang, Sep 11 2016
A fixed point of the run length transform. - Chai Wah Wu, Oct 21 2016
Length of period of continued fraction for sqrt(A002522) or sqrt(A002496). - A.H.M. Smeets, Oct 10 2017
a(n) is also the determinant of the (n+1) X (n+1) matrix M defined by M(i,j) = binomial(i,j) for 0 <= i,j <= n, since M is a lower triangular matrix with main diagonal all 1's. - Jianing Song, Jul 17 2018
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = min(i,j) for 1 <= i,j <= n (see Xavier Merlin reference). - Bernard Schott, Dec 05 2018
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = tau(gcd(i,j)) for 1 <= i,j <= n (see De Koninck & Mercier reference). - Bernard Schott, Dec 08 2020

Examples

			1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...)))) = A001622.
1/9 = 0.11111111111111...
From _Wolfdieter Lang_, Feb 09 2012: (Start)
Modd 7 for nonnegative odd numbers not divisible by 3:
A007310: 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, ...
Modd 3:  1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
(End)
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 186.
  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 692 pp. 90 and 297, Ellipses, Paris, 2004.
  • Xavier Merlin, Méthodix Algèbre, Exercice 1-a), page 153, Ellipses, Paris, 1995.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 277, 284.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
  • Paul Zeitz, The Art and Craft of Mathematical Problem Solving, The Great Courses, The Teaching Company, 2010 (DVDs and Course Guidebook, Lecture 6: "Pictures, Recasting, and Points of View", pp. 32-34).

Crossrefs

Programs

  • Haskell
    a000012 = const 1
    a000012_list = repeat 1 -- Reinhard Zumkeller, May 07 2012
    
  • Magma
    [1 : n in [0..100]];
    
  • Maple
    seq(1, i=0..150);
  • Mathematica
    Array[1 &, 50] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
  • Maxima
    makelist(1, n, 1, 30); /* Martin Ettl, Nov 07 2012 */
    
  • PARI
    {a(n) = 1};
    
  • Python
    print([1 for n in range(90)]) # Michael S. Branicky, Apr 04 2022

Formula

a(n) = 1.
G.f.: 1/(1-x).
E.g.f.: exp(x).
G.f.: Product_{k>=0} (1 + x^(2^k)). - Zak Seidov, Apr 06 2007
Completely multiplicative with a(p^e) = 1.
Regarded as a square array by antidiagonals, g.f. 1/((1-x)(1-y)), e.g.f. Sum T(n,m) x^n/n! y^m/m! = e^{x+y}, e.g.f. Sum T(n,m) x^n y^m/m! = e^y/(1-x). Regarded as a triangular array, g.f. 1/((1-x)(1-xy)), e.g.f. Sum T(n,m) x^n y^m/m! = e^{xy}/(1-x). - Franklin T. Adams-Watters, Feb 06 2006
Dirichlet g.f.: zeta(s). - Ilya Gutkovskiy, Aug 31 2016
a(n) = Sum_{l=1..n} (-1)^(l+1)*2*cos(Pi*l/(2*n+1)) = 1 identically in n >= 1 (for n=0 one has 0 from the undefined sum). From the Jolley reference, (429) p. 80. Interpretation: consider the n segments between x=0 and the n positive zeros of the Chebyshev polynomials S(2*n, x) (see A049310). Then the sum of the lengths of every other segment starting with the one ending in the largest zero (going from the right to the left) is 1. - Wolfdieter Lang, Sep 01 2016
As a lower triangular matrix, T = M*T^(-1)*M = M*A167374*M, where M(n,k) = (-1)^n A130595(n,k). Note that M = M^(-1). Cf. A118800 and A097805. - Tom Copeland, Nov 15 2016

A097805 Number of compositions of n with k parts, T(n, k) = binomial(n-1, k-1) for n, k >= 1 and T(n, 0) = 0^n, triangle read by rows for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 0, 1, 6, 15, 20, 15, 6, 1, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0

Views

Author

Paul Barry, Aug 25 2004

Keywords

Comments

Previous name was: Riordan array (1, 1/(1-x)) read by rows.
Note this Riordan array would be denoted (1, x/(1-x)) by some authors.
Columns have g.f. (x/(1-x))^k. Reverse of A071919. Row sums are A011782. Antidiagonal sums are Fibonacci(n-1). Inverse as Riordan array is (1, 1/(1+x)). A097805=B*A059260*B^(-1), where B is the binomial matrix.
(0,1)-Pascal triangle. - Philippe Deléham, Nov 21 2006
(n+1) * each term of row n generates triangle A127952: (1; 0, 2; 0, 3, 3; 0, 4, 8, 4; ...). - Gary W. Adamson, Feb 09 2007
Triangle T(n,k), 0<=k<=n, read by rows, given by [0,1,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2008
From Paul Weisenhorn, Feb 09 2011: (Start)
Triangle read by rows: T(r,c) is the number of unordered partitions of n=r*(r+1)/2+c into (r+1) parts < (r+1) and at most pairs of equal parts and parts in neighboring pairs have difference 2.
Triangle read by rows: T(r,c) is the number of unordered partitions of the number n=r*(r+1)/2+(c-1) into r parts < (r+1) and at most pairs of equal parts and parts in neighboring pairs have difference 2. (End)
Triangle read by rows: T(r,c) is the number of ordered partitions (compositions) of r into c parts. - Juergen Will, Jan 04 2016
From Tom Copeland, Oct 25 2012: (Start)
Given a basis composed of a sequence of polynomials p_n(x) characterized by ladder (creation / annihilation, or raising / lowering) operators defined by R p_n(x) = p_(n+1)(x) and L p_n(x) = n p_(n-1)(x) with p_0(x)=1, giving the number operator # p_n(x) = RL p_n(x) = n p_n(x), the lower triangular padded Pascal matrix Pd (A097805) serves as a matrix representation of the operator exp(R^2*L) = exp(R#) =
1) exp(x^2D) for the set x^n and
2) D^(-1) exp(t*x)D for the set x^n/n! (see A218234).
(End)
From James East, Apr 11 2014: (Start)
Square array a(m,n) with m,n=0,1,2,... read by off-diagonals.
a(m,n) gives the number of order-preserving functions f:{1,...,m}->{1,...,n}. Order-preserving means that x
a(n,n)=A088218(n) is the size of the semigroup O_n of all order-preserving transformations of {1,...,n}.
Read as a triangle, this sequence may be obtained by augmenting Pascal's triangle by appending the column 1,0,0,0,... on the left.
(End)
A formula based on the partitions of n with largest part k is given as a Sage program below. The 'conjugate' formula leads to A048004. - Peter Luschny, Jul 13 2015
From Wolfdieter Lang, Feb 17 2017: (Start)
The transposed of this lower triangular Riordan matrix of the associated type T provides the transition matrix between the monomial basis {x^n}, n >= 0, and the basis {y^n}, n >= 0, with y = x/(1-x): x^0 = 1 = y^0, x^n = Sum_{m >= n} Ttrans(n,m) y^m, for n >= 1, with Ttrans(n,m) = binomial(m-1,n-1).
Therefore, if a transformation with this Riordan matrix from a sequence {a} to the sequence {b} is given by b(n) = Sum_{m=0..n} T(n, m)*a(m), with T(n, m) = binomial(n-1, m-1), for n >= 1, then Sum_{n >= 0} a(n)*x^n = Sum_{n >= 0} b(n)*y^n, with y = x/(1-x) and vice versa. This is a modified binomial transformation; the usual one belongs to the Pascal Riordan matrix A007318. (End)
From Gus Wiseman, Jan 23 2022: (Start)
Also the number of compositions of n with alternating sum k, with k ranging from -n to n in steps of 2. For example, row n = 6 counts the following compositions (empty column indicated by dot):
. (15) (24) (33) (42) (51) (6)
(141) (132) (123) (114)
(1113) (231) (222) (213)
(1212) (1122) (321) (312)
(1311) (1221) (1131) (411)
(2112) (2121)
(2211) (3111)
(11121) (11112)
(12111) (11211)
(111111) (21111)
The reverse-alternating version is the same. Counting compositions by all three parameters (sum, length, alternating sum) gives A345197. Compositions of 2n with alternating sum 2k with k ranging from -n + 1 to n are A034871. (End)
Also the convolution triangle of A000012. - Peter Luschny, Oct 07 2022
From Sergey Kitaev, Nov 18 2023: (Start)
Number of permutations of length n avoiding simultaneously the patterns 123 and 132 with k right-to-left maxima. A right-to-left maximum in a permutation a(1)a(2)...a(n) is position i such that a(j) < a(i) for all i < j.
Number of permutations of length n avoiding simultaneously the patterns 231 and 312 with k right-to-left minima (resp., left-to-right maxima). A right-to-left minimum (resp., left-to-right maximum) in a permutation a(1)a(2)...a(n) is position i such that a(j) > a(i) for all j > i (resp., a(j) < a(i) for all j < i).
Number of permutations of length n avoiding simultaneously the patterns 213 and 312 with k right-to-left maxima (resp., left-to-right maxima).
Number of permutations of length n avoiding simultaneously the patterns 213 and 231 with k right-to-left maxima (resp., right-to-left minima). (End)

Examples

			G.f. = 1 + x * (x + x^3 * (1 + x) + x^6 * (1 + x)^2 + x^10 * (1 + x)^3 + ...). - _Michael Somos_, Aug 20 2006
The triangle T(n, k) begins:
n\k  0 1 2  3  4   5   6  7  8 9 10 ...
0:   1
1:   0 1
2:   0 1 1
3:   0 1 2  1
4:   0 1 3  3  1
5:   0 1 4  6  4   1
6:   0 1 5 10 10   5   1
7:   0 1 6 15 20  15   6  1
8:   0 1 7 21 35  35  21  7  1
9:   0 1 8 28 56  70  56 28  8 1
10:  0 1 9 36 84 126 126 84 36 9  1
... reformatted _Wolfdieter Lang_, Jul 31 2017
From _Paul Weisenhorn_, Feb 09 2011: (Start)
T(r=5,c=3) = binomial(4,2) = 6 unordered partitions of the number n = r*(r+1)/2+c = 18 with (r+1)=6 summands: (5+5+4+2+1+1), (5+5+3+3+1+1), (5+4+4+3+1+1), (5+5+3+2+2+1), (5+4+4+2+2+1), (5+4+3+3+2+1).
T(r=5,c=3) = binomial(4,2) = 6 unordered partitions of the number n = r*(r+1)/2+(c-1) = 17 with r=5 summands: (5+5+4+2+1), (5+5+3+3+1), (5+5+3+2+2), (5+4+4+3+1), (5+4+4+2+2), (5+4+3+3+2).  (End)
From _James East_, Apr 11 2014: (Start)
a(0,0)=1 since there is a unique (order-preserving) function {}->{}.
a(m,0)=0 for m>0 since there is no function from a nonempty set to the empty set.
a(3,2)=4 because there are four order-preserving functions {1,2,3}->{1,2}: these are [1,1,1], [2,2,2], [1,1,2], [1,2,2]. Here f=[a,b,c] denotes the function defined by f(1)=a, f(2)=b, f(3)=c.
a(2,3)=6 because there are six order-preserving functions {1,2}->{1,2,3}: these are [1,1], [1,2], [1,3], [2,2], [2,3], [3,3].
(End)
		

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Part 1, Section 7.2.1.3, 2011.

Crossrefs

Case m=0 of the polynomials defined in A278073.
Cf. A000012 (diagonal), A011782 (row sums), A088218 (central terms).
The terms just left of center in odd-indexed rows are A001791, even A002054.
The odd-indexed rows are A034871.
Row sums without the center are A058622.
The unordered version is A072233, without zeros A008284.
Right half without center has row sums A027306(n-1).
Right half with center has row sums A116406(n).
Left half without center has row sums A294175(n-1).
Left half with center has row sums A058622(n-1).
A025047 counts alternating compositions.
A098124 counts balanced compositions, unordered A047993.
A106356 counts compositions by number of maximal anti-runs.
A344651 counts partitions by sum and alternating sum.
A345197 counts compositions by sum, length, and alternating sum.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
          expand(add(b(n-i*j, i-1, p+j)/j!*x^j, j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
    seq(T(n), n=0..20);  # Alois P. Heinz, May 25 2014
    # Alternatively:
    T := proc(k,n) option remember;
    if k=n then 1 elif k=0 then 0 else
    add(T(k-1,n-i), i=1..n-k+1) fi end:
    A097805 := (n,k) -> T(k,n):
    for n from 0 to 12 do seq(A097805(n,k), k=0..n) od; # Peter Luschny, Mar 12 2016
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> 1);  # Peter Luschny, Oct 07 2022
  • Mathematica
    T[0, 0] = 1; T[n_, k_] := Binomial[n-1, k-1]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 03 2014, after Paul Weisenhorn *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==k&]],{n,0,10},{k,0,n}] (* Gus Wiseman, Jan 23 2022 *)
  • PARI
    {a(n) = my(m); if( n<2, n==0, n--; m = (sqrtint(8*n + 1) - 1)\2; binomial(m-1, n - m*(m + 1)/2))}; /* Michael Somos, Aug 20 2006 */
    
  • PARI
    T(n,k) = if (k==0, 0^n, binomial(n-1, k-1)); \\ Michel Marcus, May 06 2022
    
  • PARI
    row(n) = vector(n+1, k, k--; if (k==0, 0^n, binomial(n-1, k-1))); \\ Michel Marcus, May 06 2022
    
  • Python
    from math import comb
    def T(n, k): return comb(n-1, k-1) if k != 0 else k**n  # Peter Luschny, May 06 2022
  • Sage
    # Illustrates a basic partition formula, is not efficient as a program for large n.
    def A097805_row(n):
        r = []
        for k in (0..n):
            s = 0
            for q in Partitions(n, max_part=k, inner=[k]):
                s += mul(binomial(q[j],q[j+1]) for j in range(len(q)-1))
            r.append(s)
        return r
    [A097805_row(n) for n in (0..9)] # Peter Luschny, Jul 13 2015
    

Formula

Number triangle T(n, k) defined by T(n,k) = Sum_{j=0..n} binomial(n, j)*if(k<=j, (-1)^(j-k), 0).
T(r,c) = binomial(r-1,c-1), 0 <= c <= r. - Paul Weisenhorn, Feb 09 2011
G.f.: (-1+x)/(-1+x+x*y). - R. J. Mathar, Aug 11 2015
a(0,0) = 1, a(n,k) = binomial(n-1,n-k) = binomial(n-1,k-1) Juergen Will, Jan 04 2016
G.f.: (x^1 + x^2 + x^3 + ...)^k = (x/(1-x))^k. - Juergen Will, Jan 04 2016
From Tom Copeland, Nov 15 2016: (Start)
E.g.f.: 1 + x*[e^((x+1)t)-1]/(x+1).
This padded Pascal matrix with the odd columns negated is NpdP = M*S = S^(-1)*M^(-1) = S^(-1)*M, where M(n,k) = (-1)^n A130595(n,k), the inverse Pascal matrix with the odd rows negated, S is the summation matrix A000012, the lower triangular matrix with all elements unity, and S^(-1) = A167374, a finite difference matrix. NpdP is self-inverse, i.e., (M*S)^2 = the identity matrix, and has the e.g.f. 1 - x*[e^((1-x)t)-1]/(1-x).
M = NpdP*S^(-1) follows from the well-known recursion property of the Pascal matrix, implying NpdP = M*S.
The self-inverse property of -NpdP is implied by the self-inverse relation of its embedded signed Pascal submatrix M (cf. A130595). Also see A118800 for another proof.
Let P^(-1) be A130595, the inverse Pascal matrix. Then T = A200139*P^(-1) and T^(-1) = padded P^(-1) = P*A097808*P^(-1). (End)
The center (n>0) is T(2n+1,n+1) = A000984(n) = 2*A001700(n-1) = 2*A088218(n) = A126869(2n) = 2*A138364(2n-1). - Gus Wiseman, Jan 25 2022

Extensions

Corrected by Philippe Deléham, Oct 05 2005
New name using classical terminology by Peter Luschny, Feb 05 2019

A173557 a(n) = Product_{primes p dividing n} (p-1).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 2, 4, 10, 2, 12, 6, 8, 1, 16, 2, 18, 4, 12, 10, 22, 2, 4, 12, 2, 6, 28, 8, 30, 1, 20, 16, 24, 2, 36, 18, 24, 4, 40, 12, 42, 10, 8, 22, 46, 2, 6, 4, 32, 12, 52, 2, 40, 6, 36, 28, 58, 8, 60, 30, 12, 1, 48, 20, 66, 16, 44, 24, 70, 2, 72, 36
Offset: 1

Author

Keywords

Comments

This is A023900 without the signs. - T. D. Noe, Jul 31 2013
Numerator of c_n = Product_{odd p| n} (p-1)/(p-2). Denominator is A305444. The initial values c_1, c_2, ... are 1, 1, 2, 1, 4/3, 2, 6/5, 1, 2, 4/3, 10/9, 2, 12/11, 6/5, 8/3, 1, 16/15, ... [Yamasaki and Yamasaki]. - N. J. A. Sloane, Jan 19 2020
Kim et al. (2019) named this function the absolute Möbius divisor function. - Amiram Eldar, Apr 08 2020

Examples

			300 = 3*5^2*2^2 => a(300) = (3-1)*(2-1)*(5-1) = 8.
		

Crossrefs

Programs

  • Haskell
    a173557 1 = 1
    a173557 n = product $ map (subtract 1) $ a027748_row n
    -- Reinhard Zumkeller, Jun 01 2015
    
  • Magma
    [EulerPhi(n)/(&+[(Floor(k^n/n)-Floor((k^n-1)/n)): k in [1..n]]): n in [1..100]]; // Vincenzo Librandi, Jan 20 2020
    
  • Maple
    A173557 := proc(n) local dvs; dvs := numtheory[factorset](n) ; mul(d-1,d=dvs) ; end proc: # R. J. Mathar, Feb 02 2011
    # second Maple program:
    a:= n-> mul(i[1]-1, i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Aug 27 2018
  • Mathematica
    a[n_] := Module[{fac = FactorInteger[n]}, If[n==1, 1, Product[fac[[i, 1]]-1, {i, Length[fac]}]]]; Table[a[n], {n, 100}]
  • PARI
    a(n) = my(f=factor(n)[,1]); prod(k=1, #f, f[k]-1); \\ Michel Marcus, Oct 31 2017
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X + p*X)/(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Jun 18 2020
    
  • PARI
    apply( {A173557(n)=vecprod([p-1|p<-factor(n)[,1]])}, [1..77]) \\ M. F. Hasler, Aug 14 2021
    
  • Python
    from math import prod
    from sympy import primefactors
    def A173557(n): return prod(p-1 for p in primefactors(n)) # Chai Wah Wu, Sep 08 2023
  • Scheme
    ;; With memoization-macro definec.
    (definec (A173557 n) (if (= 1 n) 1 (* (- (A020639 n) 1) (A173557 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017
    

Formula

a(n) = A003958(n) iff n is squarefree. a(n) = |A023900(n)|.
Multiplicative with a(p^e) = p-1, e >= 1. - R. J. Mathar, Mar 30 2011
a(n) = phi(rad(n)) = A000010(A007947(n)). - Enrique Pérez Herrero, May 30 2012
a(n) = A000010(n) / A003557(n). - Jason Kimberley, Dec 09 2012
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 - 2p^(-s) + p^(1-s)). The Dirichlet inverse is multiplicative with b(p^e) = (1 - p) * (2 - p)^(e - 1) = Sum_k A118800(e, k) * p^k. - Álvar Ibeas, Nov 24 2017
a(1) = 1; for n > 1, a(n) = (A020639(n)-1) * a(A028234(n)). - Antti Karttunen, Nov 28 2017
From Vaclav Kotesovec, Jun 18 2020: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(2*s-2) * Product_{p prime} (1 - 2/(p + p^s)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A307868 = Product_{p prime} (1 - 2/(p*(p+1))) = 0.471680613612997868... (End)
a(n) = (-1)^A001221(n)*A023900(n). - M. F. Hasler, Aug 14 2021

Extensions

Definition corrected by M. F. Hasler, Aug 14 2021
Incorrect formula removed by Pontus von Brömssen, Aug 15 2021

A193722 Triangular array: the fusion of (x+1)^n and (x+2)^n; see Comments for the definition of fusion.

Original entry on oeis.org

1, 1, 2, 1, 5, 6, 1, 8, 21, 18, 1, 11, 45, 81, 54, 1, 14, 78, 216, 297, 162, 1, 17, 120, 450, 945, 1053, 486, 1, 20, 171, 810, 2295, 3888, 3645, 1458, 1, 23, 231, 1323, 4725, 10773, 15309, 12393, 4374, 1, 26, 300, 2016, 8694, 24948, 47628, 58320, 41553, 13122
Offset: 0

Author

Clark Kimberling, Aug 04 2011

Keywords

Comments

Suppose that p = p(n)*x^n + p(n-1)*x^(n-1) + ... + p(1)*x + p(0) is a polynomial and that Q is a sequence of polynomials
...
q(k,x)=t(k,0)*x^k+t(k,1)*x^(k-1)+...+t(k,k-1)*x+t(k,k),
...
for k=0,1,2,... The Q-upstep of p is the polynomial given by
...
U(p) = p(n)*q(n+1,x) + p(n-1)*q(n,x) + ... + p(0)*q(1,x); note that q(0,x) does not appear.
...
Now suppose that P=(p(n,x)) and Q=(q(n,x)) are sequences of polynomials, where n indicates degree. The fusion of P by Q, denoted by P**Q, is introduced here as the sequence W=(w(n,x)) of polynomials defined by w(0,x)=1 and w(n+1,x)=U(p(n,x)).
...
Strictly speaking, ** is an operation on sequences of polynomials. However, if P and Q are regarded as numerical triangles (e.g., coefficients of polynomials), then ** can be regarded as an operation on numerical triangles. In this case, row (n+1) of P**Q, for n >= 0, is given by the matrix product P(n)*QQ(n), where P(n)=(p(n,n)...p(n,n-1)......p(n,1), p(n,0)) and QQ(n) is the (n+1)-by-(n+2) matrix given by
...
q(n+1,0) .. q(n+1,1)........... q(n+1,n) .... q(n+1,n+1)
0 ......... q(n,0)............. q(n,n-1) .... q(n,n)
0 ......... 0.................. q(n-1,n-2) .. q(n-1,n-1)
...
0 ......... 0.................. q(2,1) ...... q(2,2)
0 ......... 0 ................. q(1,0) ...... q(1,1);
here, the polynomial q(k,x) is taken to be
q(k,0)*x^k + q(k,1)x^(k-1) + ... + q(k,k)*x+q(k,k-1); i.e., "q" is used instead of "t".
...
If s=(s(1),s(2),s(3),...) is a sequence, then the infinite square matrix indicated by
s(1)...s(2)...s(3)...s(4)...s(5)...
..0....s(1)...s(2)...s(3)...s(4)...
..0......0....s(1)...s(2)...s(3)...
..0......0.......0...s(1)...s(2)...
is the self-fusion matrix of s; e.g., A202453, A202670.
...
Example: let p(n,x)=(x+1)^n and q(n,x)=(x+2)^n. Then
...
w(0,x) = 1 by definition of W
w(1,x) = U(p(0,x)) = U(1) = p(0,0)*q(1,x) = 1*(x+2) = x+2;
w(2,x) = U(p(1,x)) = U(x+1) = q(2,x) + q(1,x) = x^2+5x+6;
w(3,x) = U(p(2,x)) = U(x^2+2x+1) = q(3,x) + 2q(2,x) + q(1,x) = x^3+8x^2+21x+18;
...
From these first 4 polynomials in the sequence P**Q, we can write the first 4 rows of P**Q when P, Q, and P**Q are regarded as triangles:
1;
1, 2;
1, 5, 6;
1, 8, 21, 18;
...
Generally, if P and Q are the sequences given by p(n,x)=(ax+b)^n and q(n,x)=(cx+d)^n, then P**Q is given by (cx+d)(bcx+a+bd)^n.
...
In the following examples, r(P**Q) is the mirror of P**Q, obtained by reversing the rows of P**Q.
...
..P...........Q.........P**Q.......r(P**Q)
(x+1)^n.....(x+1)^n.....A081277....A118800 (unsigned)
(x+1)^n.....(x+2)^n.....A193722....A193723
(x+2)^n.....(x+1)^n.....A193724....A193725
(x+2)^n.....(x+2)^n.....A193726....A193727
(x+2)^n.....(2x+1)^n....A193728....A193729
(2x+1)^n....(x+1)^n.....A038763....A136158
(2x+1)^n....(2x+1)^n....A193730....A193731
(2x+1)^n,...(x+1)^n.....A193734....A193735
...
Continuing, let u denote the polynomial x^n+x^(n-1)+...+x+1, and let Fibo[n,x] denote the n-th Fibonacci polynomial.
...
P.............Q.........P**Q.......r(P**Q)
Fib[n+1,x]...(x+1)^n....A193736....A193737
u.............u.........A193738....A193739
u**u..........u**u......A193740....A193741
...
Regarding A193722:
col 1 ..... A000012
col 2 ..... A016789
col 3 ..... A081266
w(n,n) .... A025192
w(n,n-1) .. A081038
...
Associated with "upstep" as defined above is "downstep" defined at A193842 in connection with fission.

Examples

			First six rows:
  1;
  1,   2;
  1,   5,   6;
  1,   8,  21,  18;
  1,  11,  45,  81,  54;
  1,  14,  78, 216, 297, 162;
		

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> 3^(k-1)*( Binomial(n-1,k) + 2*Binomial(n,k) ) ))); # G. C. Greubel, Feb 18 2020
  • Magma
    [3^(k-1)*( Binomial(n-1,k) + 2*Binomial(n,k) ): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
    
  • Maple
    fusion := proc(p, q, n) local d, k;
    p(n-1,0)*q(n,x)+add(coeff(p(n-1,x),x^k)*q(n-k,x), k=1..n-1);
    [1,seq(coeff(%,x,n-1-k), k=0..n-1)] end:
    p := (n, x) -> (x + 1)^n; q := (n, x) -> (x + 2)^n;
    A193722_row := n -> fusion(p, q, n);
    for n from 0 to 5 do A193722_row(n) od; # Peter Luschny, Jul 24 2014
  • Mathematica
    (* First program *)
    z = 9; a = 1; b = 1; c = 1; d = 2;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193722 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]] (* A193723 *)
    (* Second program *)
    Table[3^(k-1)*(Binomial[n-1,k] +2*Binomial[n,k]), {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
  • PARI
    T(n,k) = 3^(k-1)*(binomial(n-1,k) +2*binomial(n,k)); \\ G. C. Greubel, Feb 18 2020
    
  • Sage
    def fusion(p, q, n):
        F = p(n-1,0)*q(n,x)+add(expand(p(n-1,x)).coefficient(x,k)*q(n-k,x) for k in (1..n-1))
        return [1]+[expand(F).coefficient(x,n-1-k) for k in (0..n-1)]
    A193842_row = lambda k: fusion(lambda n,x: (x+1)^n, lambda n,x: (x+2)^n, k)
    for n in range(7): A193842_row(n) # Peter Luschny, Jul 24 2014
    

Formula

Triangle T(n,k), read by rows, given by [1,0,0,0,0,0,0,0,...] DELTA [2,1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 04 2011
T(n,k) = 3*T(n-1,k-1) + T(n-1,k) with T(0,0)=T(1,0)=1 and T(1,1)=2. - Philippe Deléham, Oct 05 2011
T(n, k) = 3^(k-1)*( binomial(n-1,k) + 2*binomial(n,k) ). - G. C. Greubel, Feb 18 2020

A028297 Coefficients of Chebyshev polynomials of the first kind: triangle of coefficients in expansion of cos(n*x) in descending powers of cos(x).

Original entry on oeis.org

1, 1, 2, -1, 4, -3, 8, -8, 1, 16, -20, 5, 32, -48, 18, -1, 64, -112, 56, -7, 128, -256, 160, -32, 1, 256, -576, 432, -120, 9, 512, -1280, 1120, -400, 50, -1, 1024, -2816, 2816, -1232, 220, -11, 2048, -6144, 6912, -3584, 840, -72, 1, 4096, -13312, 16640, -9984
Offset: 0

Keywords

Comments

Rows are of lengths 1, 1, 2, 2, 3, 3, ... (A008619).
This triangle is generated from A118800 by shifting down columns to allow for (1, 1, 2, 2, 3, 3, ...) terms in each row. - Gary W. Adamson, Dec 16 2007
Unsigned triangle = A034839 * A007318. - Gary W. Adamson, Nov 28 2008
Triangle, with zeros omitted, given by (1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, -1, 1, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 16 2011
From Wolfdieter Lang, Aug 02 2014: (Start)
This irregular triangle is the row reversed version of the Chebyshev T-triangle A053120 given by A039991 with vanishing odd-indexed columns removed.
If zeros are appended in each row n >= 1, in order to obtain a regular triangle (see the Philippe Deléham comment, g.f. and example) this becomes the Riordan triangle (1-x)/(1-2*x), -x^2/(1-2*x). See also the unsigned version A201701 of this regular triangle.
(End)
Apparently, unsigned diagonals of this array are rows of A200139. - Tom Copeland, Oct 11 2014
It appears that the coefficients are generated by the following: Let SM_k = Sum( d_(t_1, t_2)* eM_1^t_1 * eM_2^t_2) summed over all length 2 integer partitions of k, i.e., 1*t_1 + 2*t_2 = k, where SM_k are the averaged k-th power sum symmetric polynomials in 2 data (i.e., SM_k = S_k/2 where S_k are the k-th power sum symmetric polynomials, and where eM_k are the averaged k-th elementary symmetric polynomials, eM_k = e_k/binomial(2,k) with e_k being the k-th elementary symmetric polynomials. The data d_(t_1, t_2) form an irregular triangle, with one row for each k value starting with k=1. Thus this procedure and associated OEIS sequences A287768, A288199, A288207, A288211, A288245, A288188 are generalizations of Chebyshev polynomials of the first kind. - Gregory Gerard Wojnar, Jul 01 2017

Examples

			Letting c = cos x, we have: cos 0x = 1, cos 1x = 1c; cos 2x = 2c^2-1; cos 3x = 4c^3-3c, cos 4x = 8c^4-8c^2+1, etc.
T4 = 8x^4 - 8x^2 + 1 = 8, -8, +1 = 2^(3) - (4)(2) + [2^(-1)](4)/2.
From _Wolfdieter Lang_, Aug 02 2014: (Start)
The irregular triangle T(n,k) begins:
n\k     1      2     3      4     5     6   7   8 ....
0:      1
1:      1
2:      2     -1
3:      4     -3
4:      8     -8     1
5:     16    -20     5
6:     32    -48    18     -1
7:     64   -112    56     -7
8:    128   -256   160    -32     1
9:    256   -576   432   -120     9
10:   512  -1280  1120   -400    50    -1
11:  1024  -2816  2816  -1232   220   -11
12:  2048  -6144  6912  -3584   840   -72   1
13:  4096 -13312 16640  -9984  2912  -364  13
14:  8192 -28672 39424 -26880  9408 -1568  98  -1
15: 16384 -61440 92160 -70400 28800 -6048 560 -15
...
T(4,x) = 8*x^4 -8*x^2 + 1*x^0, T(5,x) = 16*x^5 - 20*x^3 + 5*x^1, with Chebyshev's T-polynomials (A053120). (End)
From _Philippe Deléham_, Dec 16 2011: (Start)
The triangle (1,1,0,0,0,0,...) DELTA (0,-1,1,0,0,0,0,...) includes zeros and begins:
   1;
   1,   0;
   2,  -1,  0;
   4,  -3,  0,  0;
   8,  -8,  1,  0, 0;
  16, -20,  5,  0, 0, 0;
  32, -48, 18, -1, 0, 0, 0; (End)
		

References

  • I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 5th ed., Section 1.335, p. 35.
  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 106. [From Rick L. Shepherd, Jul 06 2010]

Crossrefs

Cf. A028298.
Reflection of A008310, the main entry. With zeros: A039991.
Cf. A053120 (row reversed table including zeros).
Cf. A001333 (row sums 1), A001333 (alternating row sums). - Wolfdieter Lang, Aug 02 2014

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n<2, 1, expand(2*b(n-1)-x*b(n-2))) end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Sep 04 2019
  • Mathematica
    t[n_] := (Cos[n x] // TrigExpand) /. Sin[x]^m_ /; EvenQ[m] -> (1 - Cos[x]^2)^(m/2) // Expand; Flatten[Table[ r = Reverse @ CoefficientList[t[n], Cos[x]]; If[OddQ[Length[r]], AppendTo[r,0]]; Partition[r,2][[All, 1]],{n, 0, 13}] ][[1 ;; 53]] (* Jean-François Alcover, May 06 2011 *)
    Tpoly[n_] := HypergeometricPFQ[{(1 - n)/2, -n/2}, {1/2}, 1 - x];
    Table[CoefficientList[Tpoly[n], x], {n, 0, 12}] // Flatten (* Peter Luschny, Feb 03 2021 *)

Formula

cos(n*x) = 2 * cos((n-1)*x) * cos(x) - cos((n-2)*x) (from CRC's Multiple-angle relations). - Rick L. Shepherd, Jul 06 2010
G.f.: (1-x) / (1-2x+y*x^2). - Philippe Deléham, Dec 16 2011
Sum_{k=0..n} T(n,k)*x^k = A011782(n), A000012(n), A146559(n), A087455(n), A138230(n), A006495(n), A138229(n) for x = 0, 1, 2, 3, 4, 5, 6, respectively. - Philippe Deléham, Dec 16 2011
T(n,k) = [x^k] hypergeom([1/2 - n/2, -n/2], [1/2], 1 - x). - Peter Luschny, Feb 03 2021
T(n,k) = (-1)^k * 2^(n-1-2*k) * A034807(n,k). - Hoang Xuan Thanh, Jun 21 2025

Extensions

More terms from David W. Wilson
Row length sequence and link to Abramowitz-Stegun added by Wolfdieter Lang, Aug 02 2014

A081277 Square array of unsigned coefficients of Chebyshev polynomials of the first kind.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 8, 4, 1, 7, 18, 20, 8, 1, 9, 32, 56, 48, 16, 1, 11, 50, 120, 160, 112, 32, 1, 13, 72, 220, 400, 432, 256, 64, 1, 15, 98, 364, 840, 1232, 1120, 576, 128, 1, 17, 128, 560, 1568, 2912, 3584, 2816, 1280, 256, 1, 19, 162, 816, 2688, 6048, 9408, 9984, 6912
Offset: 0

Author

Paul Barry, Mar 16 2003

Keywords

Comments

Formatted as a triangular array, this is [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] (see construction in A084938 ). - Philippe Deléham, Aug 09 2005
Antidiagonal sums are in A025192. - Philippe Deléham, Dec 04 2006
Binomial transform of n-th row of the triangle (followed by zeros) = n-th row of the A142978 array and n-th column of triangle A104698. - Gary W. Adamson, Jul 17 2008
When formatted as a triangle, A038763=fusion of polynomial sequences (x+1)^n and (x+1)^n; see A193722 for the definition of fusion of two polynomial sequences or triangular arrays. Row n of A038763, as a triangle, consists of coefficients of the product (x+1)*(x+2)^n. - Clark Kimberling, Aug 04 2011

Examples

			Rows begin
  1, 1,  2,   4,   8, ...
  1, 3,  8,  20,  48, ...
  1, 5, 18,  56, 160, ...
  1, 7, 32, 120, 400, ...
  1, 9, 50, 220, 840, ...
  ...
As a triangle:
  1;
  1,  1;
  1,  3,  2;
  1,  5,  8,  4;
  1,  7, 18, 20,  8;
		

Crossrefs

Cf. A079628.
Cf. A167580 and A167591. - Johannes W. Meijer, Nov 23 2009
Cf. A053120 (antidiagonals give signed version) and A124182 (skewed version). - Mathias Zechmeister, Jul 26 2022

Programs

  • Mathematica
    (* Program generates triangle A081277 as the self-fusion of Pascal's triangle *)
    z = 8; a = 1; b = 1; c = 1; d = 1;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A081277 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]] (* abs val of A118800 *)
    Factor[w[6, x]]
    (* Clark Kimberling, Aug 04 2011 *)

Formula

T(n, k) = (n+2k)*binomial(n+k-1, k-1)*2^(n-1)/k, k > 0.
T(n, 0) defined by g.f. (1-x)/(1-2x). Other rows are defined by (1-x)/(1-2x)^n.
T(n, 0) = 0 if n < 0, T(0, k) = 0 if k < 0, T(0, 0) = T(1, 0) = 1, T(n, k) = T(n, k-1) + 2*T(n-1, k); for example, 160 = 48 + 2*56 for n = 4 and k = 2. -Philippe Deléham, Aug 12 2005
G.f. of the triangular interpretation: (-1+x*y)/(-1+2*x*y+x). - R. J. Mathar, Aug 11 2015

A167374 Triangle, read by rows, given by [ -1,1,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, -1, 1, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1
Offset: 0

Author

Philippe Deléham, Nov 02 2009

Keywords

Comments

Riordan array (1-x,1) read by rows; Riordan inverse is (1/(1-x),1). Columns have g.f. (1-x)x^k. Diagonal sums are A033999. Unsigned version in A097806.
Table T(n,k) read by antidiagonals. T(n,1) = 1, T(n,2) = -1, T(n,k) = 0, k > 2. - Boris Putievskiy, Jan 17 2013
Finite difference operator (pair difference): left multiplication by T of a sequence arranged as a column vector gives a running forward difference, a(k+1)-a(k), or first finite difference (modulo sign), of the elements of the sequence. T^n gives the n-th finite difference (mod sign). T is the inverse of the summation matrix A000012 (regarded as lower triangular matrices). - Tom Copeland, Mar 26 2014

Examples

			Triangle begins:
   1;
  -1,  1;
   0, -1,  1;
   0,  0, -1,  1;
   0,  0,  0, -1,  1;
   0,  0,  0,  0, -1,  1; ...
Row number r (r>4) contains (r-2) times '0', then '-1' and '1'.
From _Boris Putievskiy_, Jan 17 2013: (Start)
The start of the sequence as a table:
  1  -1  0  0  0  0  0 ...
  1  -1  0  0  0  0  0 ...
  1  -1  0  0  0  0  0 ...
  1  -1  0  0  0  0  0 ...
  1  -1  0  0  0  0  0 ...
  1  -1  0  0  0  0  0 ...
  1  -1  0  0  0  0  0 ...
  ...
(End)
		

Programs

  • Maple
    A167374 := proc(n,k)
        if k> n or k < n-1 then
            0;
        elif k = n then
            1;
        else
            -1 ;
        end if;
    end proc: # R. J. Mathar, Sep 07 2016
  • Mathematica
    Table[PadLeft[{-1, 1}, n], {n, 13}] // Flatten (* or *)
    MapIndexed[Take[#1, First@ #2] &, CoefficientList[Series[(1 - x)/(1 - x y), {x, 0, 12}], {x, y}]] // Flatten (* Michael De Vlieger, Nov 16 2016 *)
    T[n_, k_] := If[ k<0 || k>n, 0, Boole[n==k] - Boole[n==k+1]]; (* Michael Somos, Oct 01 2022 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, (n==k) - (n==k+1))}; /* Michael Somos, Oct 01 2022 */

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A011782(n), A025192(n), A002001(n), A005054(n), A052934(n), A055272(n), A055274(n), A055275(n), A055268(n), A055276(n) for x = 1,2,3,4,5,6,7,8,9,10,11 respectively .
From Boris Putievskiy, Jan 17 2013: (Start)
a(n) = floor((A002260(n)+2)/(A003056(n)+2))*(-1)^(A002260(n)+A003056(n)+1), n>0.
a(n) = floor((i+2)/(t+2))*(-1)^(i+t+1), n > 0, where
i = n - t*(t+1)/2,
t = floor((-1 + sqrt(8*n-7))/2). (End)
T*A000012 = Identity matrix. T*A007318 = A097805. T*(A007318)^(-1)= signed A029653. - Tom Copeland, Mar 26 2014
G.f.: (1-x)/(1-x*y). - R. J. Mathar, Aug 11 2015
T = A130595*A156644 = M*T^(-1)*M = M*A000012*M, where M(n,k) = (-1)^n A130595(n,k). Note that M = M^(-1). Cf. A118800 and A097805. - Tom Copeland, Nov 15 2016

A118801 Triangle T that satisfies the matrix products: C*[T^-1]*C = T and T*[C^-1]*T = C, where C is Pascal's triangle.

Original entry on oeis.org

1, 1, -1, 1, -3, 1, 1, -7, 5, -1, 1, -15, 17, -7, 1, 1, -31, 49, -31, 9, -1, 1, -63, 129, -111, 49, -11, 1, 1, -127, 321, -351, 209, -71, 13, -1, 1, -255, 769, -1023, 769, -351, 97, -15, 1, 1, -511, 1793, -2815, 2561, -1471, 545, -127, 17, -1, 1, -1023, 4097, -7423, 7937, -5503, 2561, -799, 161, -19, 1
Offset: 0

Author

Paul D. Hanna, May 02 2006

Keywords

Comments

Matrix inverse is triangle A118800. Row sums are: (1-n). Unsigned row sums equal A007051(n) = (3^n + 1)/2. Row squared sums equal A118802. Antidiagonal sums equal A080956(n) = (n+1)(2-n)/2. Unsigned antidiagonal sums form A024537 (with offset).
T = C^2*D^-1 where matrix product D = C^-1*T*C = T^-1*C^2 has only 2 nonzero diagonals: D(n,n)=-D(n+1,n)=(-1)^n, with zeros elsewhere. Also, [B^-1]*T*[B^-1] = B*[T^-1]*B forms a self-inverse matrix, where B^2 = C and B(n,k) = C(n,k)/2^(n-k). - Paul D. Hanna, May 04 2006
Riordan array ( 1/(1 - x), -x/(1 - 2*x) ) The matrix square is the Riordan array ( (1 - 2*x)/(1 - x)^2, x ), which belongs to the Appell subgroup of the Riordan group. See the Example section below. - Peter Bala, Jul 17 2013

Examples

			Formulas for initial columns are, for n>=0:
T(n+1,1) = 1 - 2^(n+1);
T(n+2,2) = 1 + 2^(n+1)*n;
T(n+3,3) = 1 - 2^(n+1)*(n*(n+1)/2 + 1);
T(n+4,4) = 1 + 2^(n+1)*(n*(n+1)*(n+2)/6 + n);
T(n+5,5) = 1 - 2^(n+1)*(n*(n+1)*(n+2)*(n+3)/24 + n*(n+1)/2 + 1).
Triangle begins:
1;
1,-1;
1,-3,1;
1,-7,5,-1;
1,-15,17,-7,1;
1,-31,49,-31,9,-1;
1,-63,129,-111,49,-11,1;
1,-127,321,-351,209,-71,13,-1;
1,-255,769,-1023,769,-351,97,-15,1;
1,-511,1793,-2815,2561,-1471,545,-127,17,-1;
1,-1023,4097,-7423,7937,-5503,2561,-799,161,-19,1; ...
The matrix square, T^2, starts:
1;
0,1;
-1,0,1;
-2,-1,0,1;
-3,-2,-1,0,1;
-4,-3,-2,-1,0,1; ...
where all columns are the same.
The matrix product C^-1*T*C = T^-1*C^2 is:
1;
-1,-1;
0, 1, 1;
0, 0,-1,-1;
0, 0, 0, 1, 1; ...
where C(n,k) = n!/(n-k)!/k!.
		

Crossrefs

Cf. A118800 (inverse), A007051 (unsigned row sums), A118802 (Row squared sums), A080956 (antidiagonal sums), A024537 (unsigned antidiagonal sums).
A145661, A119258 and A118801 are all essentially the same (see the Shattuck and Waldhauser paper). - Tamas Waldhauser, Jul 25 2011

Programs

  • Mathematica
    Table[(1 + (-1)^k*2^(n - k + 1)*Sum[ Binomial[n - 2 j - 2, k - 2 j - 1], {j, 0, Floor[k/2]}]) - 4 Boole[And[n == 1, k == 0]], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Nov 24 2016 *)
  • PARI
    {T(n,k)=if(n==0&k==0,1,1+(-1)^k*2^(n-k+1)*sum(j=0,k\2,binomial(n-2*j-2,k-2*j-1)))}

Formula

T(n,k) = 1 + (-1)^k*2^(n-k+1)*Sum_{j=0..[k/2]} C(n-2j-2,k-2j-1) for n>=k>=0 with T(0,0) = 1.
For k>0, T(n,k) = -T(n-1,k-1) + 2*T(n-1,k). - Gerald McGarvey, Aug 05 2006
O.g.f.: (1 - 2*t)/(1 - t) * 1/(1 + t*(x - 2)) = 1 + (1 - x)*t + (1 - 3*x + x^2)*t^2 + (1 - 7*x + 5*x^2 - x^3)*t^3 + .... - Peter Bala, Jul 17 2013
From Tom Copeland, Nov 17 2016: (Start)
Let M = A200139^(-1) = (unsigned A118800)^(-1) and NpdP be the signed padded Pascal matrix defined in A097805. Then T(n,k) = (-1)^n* M(n,k) and T = P*NpdP = (A239473)^(-1)*P^(-1) = P*A167374*P^(-1) = A156644*P^(-1), where P is the Pascal matrix A007318 with inverse A130595. Cf. A112857.
Signed P^2 = signed A032807 = T*A167374. (End)

A200139 Triangle T(n,k), read by rows, given by (1,1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 8, 5, 1, 8, 20, 18, 7, 1, 16, 48, 56, 32, 9, 1, 32, 112, 160, 120, 50, 11, 1, 64, 256, 432, 400, 220, 72, 13, 1, 128, 576, 1120, 1232, 840, 364, 98, 15, 1, 256, 1280, 2816, 3584, 2912, 1568, 560, 128, 17, 1, 512, 2816, 6912, 9984, 9408, 6048, 2688, 816, 162, 19, 1
Offset: 0

Author

Philippe Deléham, Nov 13 2011

Keywords

Comments

Riordan array ((1-x)/(1-2x),x/(1-2x)).
Product A097805*A007318 as infinite lower triangular arrays.
Product A193723*A130595 as infinite lower triangular arrays.
T(n,k) is the number of ways to place n unlabeled objects into any number of labeled bins (with at least one object in each bin) and then designate k of the bins. - Geoffrey Critzer, Nov 18 2012
Apparently, rows of this array are unsigned diagonals of A028297. - Tom Copeland, Oct 11 2014
Unsigned A118800, so my conjecture above is true. - Tom Copeland, Nov 14 2016

Examples

			Triangle begins:
   1
   1,   1
   2,   3,   1
   4,   8,   5,   1
   8,  20,  18,   7,   1
  16,  48,  56,  32,   9,   1
  32, 112, 160, 120,  50,  11,   1
		

Crossrefs

Cf. A118800 (signed version), A081277, A039991, A001333 (antidiagonal sums), A025192 (row sums); diagonals: A000012, A005408, A001105, A002492, A072819l; columns: A011782, A001792, A001793, A001794, A006974, A006975, A006976.

Programs

  • Mathematica
    nn=15;f[list_]:=Select[list,#>0&];Map[f,CoefficientList[Series[(1-x)/(1-2x-y x) ,{x,0,nn}],{x,y}]]//Grid  (* Geoffrey Critzer, Nov 18 2012 *)

Formula

T(n,k) = 2*T(n-1,k)+T(n-1,k-1) with T(0,0)=T(1,0)=T(1,1)=1 and T(n,k)=0 for k<0 or for n
T(n,k) = A011782(n-k)*A135226(n,k) = 2^(n-k)*(binomial(n,k)+binomial(n-1,k-1))/2.
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A011782(n), A025192(n), A002001(n), A005054(n), A052934(n), A055272(n), A055274(n), A055275(n), A052268(n), A055276(n), A196731(n) for n=-1,0,1,2,3,4,5,6,7,8,9,10 respectively.
G.f.: (1-x)/(1-(2+y)*x).
T(n,k) = Sum_j>=0 T(n-1-j,k-1)*2^j.
T = A007318*A059260, so the row polynomials of this entry are given umbrally by p_n(x) = (1 + q.(x))^n, where q_n(x) are the row polynomials of A059260 and (q.(x))^k = q_k(x). Consequently, the e.g.f. is exp[tp.(x)] = exp[t(1+q.(x))] = e^t exp(tq.(x)) = [1 + (x+1)e^((x+2)t)]/(x+2), and p_n(x) = (x+1)(x+2)^(n-1) for n > 0. - Tom Copeland, Nov 15 2016
T^(-1) = A130595*(padded A130595), differently signed A118801. Cf. A097805. - Tom Copeland, Nov 17 2016
The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the rational function (1 + x)/(1 + 2*x) * (1 + 2*x)^n about 0. For example, for n = 4, (1 + x)/(1 + 2*x) * (1 + 2*x)^4 = (8*x^4 + 20*x*3 + 18*x^2 + 7*x + 1) + O(x^5). - Peter Bala, Feb 24 2018

A209149 Triangle of coefficients of polynomials v(n,x) jointly generated with A209146; see the Formula section.

Original entry on oeis.org

1, 3, 1, 6, 5, 1, 12, 16, 7, 1, 24, 44, 30, 9, 1, 48, 112, 104, 48, 11, 1, 96, 272, 320, 200, 70, 13, 1, 192, 640, 912, 720, 340, 96, 15, 1, 384, 1472, 2464, 2352, 1400, 532, 126, 17, 1, 768, 3328, 6400, 7168, 5152, 2464, 784, 160, 19, 1, 1536, 7424
Offset: 1

Author

Clark Kimberling, Mar 07 2012

Keywords

Comments

Alternating row sums: 1,2,2,2,2,2,2,2,2,2,2,2,2,...
For a discussion and guide to related arrays, see A208510.
As triangle T(n,k) with 0 <= k <= n, it is (3, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 08 2012
A skew triangle of A209144. - Philippe Deléham, Mar 08 2012
Riordan array ( (1 + x)/(1 - 2*x), x/(1 - 2*x) ). Cf. A118800. Matrix inverse is a signed version of A112626. - Peter Bala, Jul 17 2013

Examples

			First five rows:
   1;
   3,  1;
   6,  5,  1;
  12, 16,  7, 1;
  24, 44, 30, 9, 1;
First three polynomials v(n,x): 1, 3 + x, 6 + 5x + x^2.
v(1,x) = 1
v(2,x) = 3 + x
v(3,x) = (3 + x)*(2 + x)
v(4,x) = (3 + x)*(2 + x)^2
v(5,x) = (3 + x)*(2 + x)^3
v(n,x) = (3 + x)*(2 + x)^(n-2)for n > 1. - _Philippe Deléham_, Mar 08 2012
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209148 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209149 *)

Formula

u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = u(n-1,x) + (x+1)*v(n-1,x) + 1,
where u(1,x)=1, v(1,x)=1.
As DELTA-triangle:
T(n,k) = 2*T(n-1,k) + T(n-1,k-1), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 08 2012
As DELTA-triangle: G.f. is (1+x)/(1-2*x-yx). - Philippe Deléham, Mar 08 2012
Showing 1-10 of 13 results. Next