1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 0, 1, 6, 15, 20, 15, 6, 1, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0
A173557
a(n) = Product_{primes p dividing n} (p-1).
Original entry on oeis.org
1, 1, 2, 1, 4, 2, 6, 1, 2, 4, 10, 2, 12, 6, 8, 1, 16, 2, 18, 4, 12, 10, 22, 2, 4, 12, 2, 6, 28, 8, 30, 1, 20, 16, 24, 2, 36, 18, 24, 4, 40, 12, 42, 10, 8, 22, 46, 2, 6, 4, 32, 12, 52, 2, 40, 6, 36, 28, 58, 8, 60, 30, 12, 1, 48, 20, 66, 16, 44, 24, 70, 2, 72, 36
Offset: 1
300 = 3*5^2*2^2 => a(300) = (3-1)*(2-1)*(5-1) = 8.
- Alois P. Heinz, Table of n, a(n) for n = 1..65536 (first 1000 terms from T. D. Noe)
- Daeyeoul Kim, Umit Sarp, and Sebahattin Ikikardes, Certain combinatoric convolution sums arising from Bernoulli and Euler Polynomials, Miskolc Mathematical Notes, No. 20, Vol. 1 (2019): pp. 311-330.
- Daeyeoul Kim, Umit Sarp, and Sebahattin Ikikardes, Iterating the Sum of Möbius Divisor Function and Euler Totient Function, Mathematics, Vol. 7, No. 11 (2019), pp. 1083-1094.
- Yamasaki, Yasuo, and Aiichi Yamasaki, On the Gap Distribution of Prime Numbers, Kyoto University Research Information Repository, October 1994. MR1370273 (97a:11141).
-
a173557 1 = 1
a173557 n = product $ map (subtract 1) $ a027748_row n
-- Reinhard Zumkeller, Jun 01 2015
-
[EulerPhi(n)/(&+[(Floor(k^n/n)-Floor((k^n-1)/n)): k in [1..n]]): n in [1..100]]; // Vincenzo Librandi, Jan 20 2020
-
A173557 := proc(n) local dvs; dvs := numtheory[factorset](n) ; mul(d-1,d=dvs) ; end proc: # R. J. Mathar, Feb 02 2011
# second Maple program:
a:= n-> mul(i[1]-1, i=ifactors(n)[2]):
seq(a(n), n=1..80); # Alois P. Heinz, Aug 27 2018
-
a[n_] := Module[{fac = FactorInteger[n]}, If[n==1, 1, Product[fac[[i, 1]]-1, {i, Length[fac]}]]]; Table[a[n], {n, 100}]
-
a(n) = my(f=factor(n)[,1]); prod(k=1, #f, f[k]-1); \\ Michel Marcus, Oct 31 2017
-
for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X + p*X)/(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Jun 18 2020
-
apply( {A173557(n)=vecprod([p-1|p<-factor(n)[,1]])}, [1..77]) \\ M. F. Hasler, Aug 14 2021
-
from math import prod
from sympy import primefactors
def A173557(n): return prod(p-1 for p in primefactors(n)) # Chai Wah Wu, Sep 08 2023
-
;; With memoization-macro definec.
(definec (A173557 n) (if (= 1 n) 1 (* (- (A020639 n) 1) (A173557 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017
A193722
Triangular array: the fusion of (x+1)^n and (x+2)^n; see Comments for the definition of fusion.
Original entry on oeis.org
1, 1, 2, 1, 5, 6, 1, 8, 21, 18, 1, 11, 45, 81, 54, 1, 14, 78, 216, 297, 162, 1, 17, 120, 450, 945, 1053, 486, 1, 20, 171, 810, 2295, 3888, 3645, 1458, 1, 23, 231, 1323, 4725, 10773, 15309, 12393, 4374, 1, 26, 300, 2016, 8694, 24948, 47628, 58320, 41553, 13122
Offset: 0
First six rows:
1;
1, 2;
1, 5, 6;
1, 8, 21, 18;
1, 11, 45, 81, 54;
1, 14, 78, 216, 297, 162;
-
Flat(List([0..10], n-> List([0..n], k-> 3^(k-1)*( Binomial(n-1,k) + 2*Binomial(n,k) ) ))); # G. C. Greubel, Feb 18 2020
-
[3^(k-1)*( Binomial(n-1,k) + 2*Binomial(n,k) ): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
-
fusion := proc(p, q, n) local d, k;
p(n-1,0)*q(n,x)+add(coeff(p(n-1,x),x^k)*q(n-k,x), k=1..n-1);
[1,seq(coeff(%,x,n-1-k), k=0..n-1)] end:
p := (n, x) -> (x + 1)^n; q := (n, x) -> (x + 2)^n;
A193722_row := n -> fusion(p, q, n);
for n from 0 to 5 do A193722_row(n) od; # Peter Luschny, Jul 24 2014
-
(* First program *)
z = 9; a = 1; b = 1; c = 1; d = 2;
p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193722 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193723 *)
(* Second program *)
Table[3^(k-1)*(Binomial[n-1,k] +2*Binomial[n,k]), {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
-
T(n,k) = 3^(k-1)*(binomial(n-1,k) +2*binomial(n,k)); \\ G. C. Greubel, Feb 18 2020
-
def fusion(p, q, n):
F = p(n-1,0)*q(n,x)+add(expand(p(n-1,x)).coefficient(x,k)*q(n-k,x) for k in (1..n-1))
return [1]+[expand(F).coefficient(x,n-1-k) for k in (0..n-1)]
A193842_row = lambda k: fusion(lambda n,x: (x+1)^n, lambda n,x: (x+2)^n, k)
for n in range(7): A193842_row(n) # Peter Luschny, Jul 24 2014
A028297
Coefficients of Chebyshev polynomials of the first kind: triangle of coefficients in expansion of cos(n*x) in descending powers of cos(x).
Original entry on oeis.org
1, 1, 2, -1, 4, -3, 8, -8, 1, 16, -20, 5, 32, -48, 18, -1, 64, -112, 56, -7, 128, -256, 160, -32, 1, 256, -576, 432, -120, 9, 512, -1280, 1120, -400, 50, -1, 1024, -2816, 2816, -1232, 220, -11, 2048, -6144, 6912, -3584, 840, -72, 1, 4096, -13312, 16640, -9984
Offset: 0
Letting c = cos x, we have: cos 0x = 1, cos 1x = 1c; cos 2x = 2c^2-1; cos 3x = 4c^3-3c, cos 4x = 8c^4-8c^2+1, etc.
T4 = 8x^4 - 8x^2 + 1 = 8, -8, +1 = 2^(3) - (4)(2) + [2^(-1)](4)/2.
From _Wolfdieter Lang_, Aug 02 2014: (Start)
The irregular triangle T(n,k) begins:
n\k 1 2 3 4 5 6 7 8 ....
0: 1
1: 1
2: 2 -1
3: 4 -3
4: 8 -8 1
5: 16 -20 5
6: 32 -48 18 -1
7: 64 -112 56 -7
8: 128 -256 160 -32 1
9: 256 -576 432 -120 9
10: 512 -1280 1120 -400 50 -1
11: 1024 -2816 2816 -1232 220 -11
12: 2048 -6144 6912 -3584 840 -72 1
13: 4096 -13312 16640 -9984 2912 -364 13
14: 8192 -28672 39424 -26880 9408 -1568 98 -1
15: 16384 -61440 92160 -70400 28800 -6048 560 -15
...
T(4,x) = 8*x^4 -8*x^2 + 1*x^0, T(5,x) = 16*x^5 - 20*x^3 + 5*x^1, with Chebyshev's T-polynomials (A053120). (End)
From _Philippe Deléham_, Dec 16 2011: (Start)
The triangle (1,1,0,0,0,0,...) DELTA (0,-1,1,0,0,0,0,...) includes zeros and begins:
1;
1, 0;
2, -1, 0;
4, -3, 0, 0;
8, -8, 1, 0, 0;
16, -20, 5, 0, 0, 0;
32, -48, 18, -1, 0, 0, 0; (End)
- I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 5th ed., Section 1.335, p. 35.
- S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 106. [From Rick L. Shepherd, Jul 06 2010]
- Alois P. Heinz, Rows n = 0..200, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy] p. 795.
- Pantelis A. Damianou, A Beautiful Sine Formula, Amer. Math. Monthly 121 (2014), no. 2, 120--135. MR3149030.
- Daniel J. Greenhoe, Frames and Bases: Structure and Design, Version 0.20, Signal Processing ABCs series (2019) Vol. 4, see page 172.
- Daniel J. Greenhoe, A Book Concerning Transforms, Version 0.10, Signal Processing ABCs series (2019) Vol. 5, see page 94.
- Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, and Minghao Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electronic Research Archive (2020) Vol. 28, No. 2, 1049-1062.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages)
- G. G. Wojnar, D. Sz. Wojnar, and L. Q. Brin, Universal Peculiar Linear Mean Relationships in All Polynomials, Table GW.n=2, p. 22, arXiv:1706.08381 [math.GM], 2017.
Cf.
A053120 (row reversed table including zeros).
-
b:= proc(n) b(n):= `if`(n<2, 1, expand(2*b(n-1)-x*b(n-2))) end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
seq(T(n), n=0..15); # Alois P. Heinz, Sep 04 2019
-
t[n_] := (Cos[n x] // TrigExpand) /. Sin[x]^m_ /; EvenQ[m] -> (1 - Cos[x]^2)^(m/2) // Expand; Flatten[Table[ r = Reverse @ CoefficientList[t[n], Cos[x]]; If[OddQ[Length[r]], AppendTo[r,0]]; Partition[r,2][[All, 1]],{n, 0, 13}] ][[1 ;; 53]] (* Jean-François Alcover, May 06 2011 *)
Tpoly[n_] := HypergeometricPFQ[{(1 - n)/2, -n/2}, {1/2}, 1 - x];
Table[CoefficientList[Tpoly[n], x], {n, 0, 12}] // Flatten (* Peter Luschny, Feb 03 2021 *)
Row length sequence and link to Abramowitz-Stegun added by
Wolfdieter Lang, Aug 02 2014
A081277
Square array of unsigned coefficients of Chebyshev polynomials of the first kind.
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 5, 8, 4, 1, 7, 18, 20, 8, 1, 9, 32, 56, 48, 16, 1, 11, 50, 120, 160, 112, 32, 1, 13, 72, 220, 400, 432, 256, 64, 1, 15, 98, 364, 840, 1232, 1120, 576, 128, 1, 17, 128, 560, 1568, 2912, 3584, 2816, 1280, 256, 1, 19, 162, 816, 2688, 6048, 9408, 9984, 6912
Offset: 0
Rows begin
1, 1, 2, 4, 8, ...
1, 3, 8, 20, 48, ...
1, 5, 18, 56, 160, ...
1, 7, 32, 120, 400, ...
1, 9, 50, 220, 840, ...
...
As a triangle:
1;
1, 1;
1, 3, 2;
1, 5, 8, 4;
1, 7, 18, 20, 8;
-
(* Program generates triangle A081277 as the self-fusion of Pascal's triangle *)
z = 8; a = 1; b = 1; c = 1; d = 1;
p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A081277 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* abs val of A118800 *)
Factor[w[6, x]]
(* Clark Kimberling, Aug 04 2011 *)
A167374
Triangle, read by rows, given by [ -1,1,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, -1, 1, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1
Offset: 0
Triangle begins:
1;
-1, 1;
0, -1, 1;
0, 0, -1, 1;
0, 0, 0, -1, 1;
0, 0, 0, 0, -1, 1; ...
Row number r (r>4) contains (r-2) times '0', then '-1' and '1'.
From _Boris Putievskiy_, Jan 17 2013: (Start)
The start of the sequence as a table:
1 -1 0 0 0 0 0 ...
1 -1 0 0 0 0 0 ...
1 -1 0 0 0 0 0 ...
1 -1 0 0 0 0 0 ...
1 -1 0 0 0 0 0 ...
1 -1 0 0 0 0 0 ...
1 -1 0 0 0 0 0 ...
...
(End)
-
A167374 := proc(n,k)
if k> n or k < n-1 then
0;
elif k = n then
1;
else
-1 ;
end if;
end proc: # R. J. Mathar, Sep 07 2016
-
Table[PadLeft[{-1, 1}, n], {n, 13}] // Flatten (* or *)
MapIndexed[Take[#1, First@ #2] &, CoefficientList[Series[(1 - x)/(1 - x y), {x, 0, 12}], {x, y}]] // Flatten (* Michael De Vlieger, Nov 16 2016 *)
T[n_, k_] := If[ k<0 || k>n, 0, Boole[n==k] - Boole[n==k+1]]; (* Michael Somos, Oct 01 2022 *)
-
{T(n, k) = if( k<0 || k>n, 0, (n==k) - (n==k+1))}; /* Michael Somos, Oct 01 2022 */
A118801
Triangle T that satisfies the matrix products: C*[T^-1]*C = T and T*[C^-1]*T = C, where C is Pascal's triangle.
Original entry on oeis.org
1, 1, -1, 1, -3, 1, 1, -7, 5, -1, 1, -15, 17, -7, 1, 1, -31, 49, -31, 9, -1, 1, -63, 129, -111, 49, -11, 1, 1, -127, 321, -351, 209, -71, 13, -1, 1, -255, 769, -1023, 769, -351, 97, -15, 1, 1, -511, 1793, -2815, 2561, -1471, 545, -127, 17, -1, 1, -1023, 4097, -7423, 7937, -5503, 2561, -799, 161, -19, 1
Offset: 0
Formulas for initial columns are, for n>=0:
T(n+1,1) = 1 - 2^(n+1);
T(n+2,2) = 1 + 2^(n+1)*n;
T(n+3,3) = 1 - 2^(n+1)*(n*(n+1)/2 + 1);
T(n+4,4) = 1 + 2^(n+1)*(n*(n+1)*(n+2)/6 + n);
T(n+5,5) = 1 - 2^(n+1)*(n*(n+1)*(n+2)*(n+3)/24 + n*(n+1)/2 + 1).
Triangle begins:
1;
1,-1;
1,-3,1;
1,-7,5,-1;
1,-15,17,-7,1;
1,-31,49,-31,9,-1;
1,-63,129,-111,49,-11,1;
1,-127,321,-351,209,-71,13,-1;
1,-255,769,-1023,769,-351,97,-15,1;
1,-511,1793,-2815,2561,-1471,545,-127,17,-1;
1,-1023,4097,-7423,7937,-5503,2561,-799,161,-19,1; ...
The matrix square, T^2, starts:
1;
0,1;
-1,0,1;
-2,-1,0,1;
-3,-2,-1,0,1;
-4,-3,-2,-1,0,1; ...
where all columns are the same.
The matrix product C^-1*T*C = T^-1*C^2 is:
1;
-1,-1;
0, 1, 1;
0, 0,-1,-1;
0, 0, 0, 1, 1; ...
where C(n,k) = n!/(n-k)!/k!.
A145661,
A119258 and
A118801 are all essentially the same (see the Shattuck and Waldhauser paper). - Tamas Waldhauser, Jul 25 2011
-
Table[(1 + (-1)^k*2^(n - k + 1)*Sum[ Binomial[n - 2 j - 2, k - 2 j - 1], {j, 0, Floor[k/2]}]) - 4 Boole[And[n == 1, k == 0]], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Nov 24 2016 *)
-
{T(n,k)=if(n==0&k==0,1,1+(-1)^k*2^(n-k+1)*sum(j=0,k\2,binomial(n-2*j-2,k-2*j-1)))}
A200139
Triangle T(n,k), read by rows, given by (1,1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 4, 8, 5, 1, 8, 20, 18, 7, 1, 16, 48, 56, 32, 9, 1, 32, 112, 160, 120, 50, 11, 1, 64, 256, 432, 400, 220, 72, 13, 1, 128, 576, 1120, 1232, 840, 364, 98, 15, 1, 256, 1280, 2816, 3584, 2912, 1568, 560, 128, 17, 1, 512, 2816, 6912, 9984, 9408, 6048, 2688, 816, 162, 19, 1
Offset: 0
Triangle begins:
1
1, 1
2, 3, 1
4, 8, 5, 1
8, 20, 18, 7, 1
16, 48, 56, 32, 9, 1
32, 112, 160, 120, 50, 11, 1
Cf.
A118800 (signed version),
A081277,
A039991,
A001333 (antidiagonal sums),
A025192 (row sums); diagonals:
A000012,
A005408,
A001105,
A002492,
A072819l; columns:
A011782,
A001792,
A001793,
A001794,
A006974,
A006975,
A006976.
-
nn=15;f[list_]:=Select[list,#>0&];Map[f,CoefficientList[Series[(1-x)/(1-2x-y x) ,{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Nov 18 2012 *)
A209149
Triangle of coefficients of polynomials v(n,x) jointly generated with A209146; see the Formula section.
Original entry on oeis.org
1, 3, 1, 6, 5, 1, 12, 16, 7, 1, 24, 44, 30, 9, 1, 48, 112, 104, 48, 11, 1, 96, 272, 320, 200, 70, 13, 1, 192, 640, 912, 720, 340, 96, 15, 1, 384, 1472, 2464, 2352, 1400, 532, 126, 17, 1, 768, 3328, 6400, 7168, 5152, 2464, 784, 160, 19, 1, 1536, 7424
Offset: 1
First five rows:
1;
3, 1;
6, 5, 1;
12, 16, 7, 1;
24, 44, 30, 9, 1;
First three polynomials v(n,x): 1, 3 + x, 6 + 5x + x^2.
v(1,x) = 1
v(2,x) = 3 + x
v(3,x) = (3 + x)*(2 + x)
v(4,x) = (3 + x)*(2 + x)^2
v(5,x) = (3 + x)*(2 + x)^3
v(n,x) = (3 + x)*(2 + x)^(n-2)for n > 1. - _Philippe Deléham_, Mar 08 2012
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209148 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209149 *)
Showing 1-10 of 13 results.
Next
Comments