cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 64 results. Next

A202605 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the Fibonacci self-fusion matrix (A202453).

Original entry on oeis.org

1, -1, 1, -3, 1, 1, -6, 9, -1, 1, -9, 26, -24, 1, 1, -12, 52, -96, 64, -1, 1, -15, 87, -243, 326, -168, 1, 1, -18, 131, -492, 1003, -1050, 441, -1, 1, -21, 184, -870, 2392, -3816, 3265, -1155, 1, 1, -24, 246, -1404, 4871, -10500, 13710
Offset: 1

Views

Author

Clark Kimberling, Dec 21 2011

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive and interlace the zeros of p(n+1). (See the references and examples.)
Following is a guide to sequences (f(n)) for symmetric matrices (self-fusion matrices) and characteristic polynomials. Notation: F(k)=A000045(k) (Fibonacci numbers); floor(n*tau)=A000201(n) (lower Wythoff sequence); "periodic x,y" represents the sequence (x,y,x,y,x,y,...).
f(n)........ symmetric matrix.. char. polynomial
1............... A087062....... A202672
n............... A115262....... A202673
n^2............. A202670....... A202671
2n-1............ A202674....... A202675
3n-2............ A202676....... A202677
n(n+1)/2........ A185957....... A202678
2^n-1........... A202873....... A202767
2^(n-1)......... A115216....... A202868
floor(n*tau).... A202869....... A202870
F(n)............ A202453....... A202605
F(n+1).......... A202874....... A202875
Lucas(n)........ A202871....... A202872
F(n+2)-1........ A202876....... A202877
F(n+3)-2........ A202970....... A202971
(F(n))^2........ A203001....... A203002
(F(n+1))^2...... A203003....... A203004
C(2n,n)......... A115255....... A203005
(-1)^(n+1)...... A003983....... A076757
periodic 1,0.... A203905....... A203906
periodic 1,0,0.. A203945....... A203946
periodic 1,0,1.. A203947....... A203948
periodic 1,1,0.. A203949....... A203950
periodic 1,0,0,0 A203951....... A203952
periodic 1,2.... A203953....... A203954
periodic 1,2,3.. A203955....... A203956
...
In the cases listed above, the zeros of the characteristic polynomials are positive. If more general symmetric matrices are used, the zeros are all real but not necessarily positive - but they do have the interlace property. For a guide to such matrices and polynomials, see A202605.

Examples

			The 1st principal submatrix (ps) of A202453 is {{1}} (using Mathematica matrix notation), with p(1) = 1-x and zero-set {1}.
...
The 2nd ps is {{1,1},{1,2}}, with p(2) = 1-3x+x^2 and zero-set {0.382..., 2.618...}.
...
The 3rd ps is {{1,1,2},{1,2,3},{2,3,6}}, with p(3) = 1-6x+9x^2-x^3 and zero-set {0.283..., 0.426..., 8.290...}.
  ...
Top of the array A202605:
  1,   -1;
  1,   -3,    1;
  1,   -6,    9,   -1;
  1,   -9,   26,  -24,    1;
  1,  -12,   52,  -96,   64,   -1;
  1,  -15,   87, -243,  326, -168,    1;
		

Crossrefs

Programs

  • Mathematica
    f[k_] := Fibonacci[k];
    U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    F[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[F[n], x]
    TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]
    TableForm[Table[c[n], {n, 1, 10}]]

A202462 a(n) = Sum_{j=1..n} Sum_{i=1..n} F(i,j), where F is the Fibonacci fusion array of A202453.

Original entry on oeis.org

1, 5, 21, 70, 214, 614, 1703, 4619, 12363, 32812, 86636, 228012, 598893, 1571089, 4118305, 10790194, 28262594, 74014290, 193807315, 507451415, 1328617751, 3478516440, 9107117016, 23843134680, 62422772569, 163425968669, 427856404653
Offset: 1

Views

Author

Clark Kimberling, Dec 19 2011

Keywords

Comments

Partial sums of A188516.

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([1..30], n-> F(n+2)*F(n+3) -2*F(n+4) +n+4); # G. C. Greubel, Jul 23 2019
  • Magma
    F:=Fibonacci; [F(n+2)*F(n+3) -2*F(n+4) +n+4: n in [1..30]]; // G. C. Greubel, Jul 23 2019
    
  • Mathematica
    (* First program *)
    n = 28;
    Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[
       Table[Fibonacci[k], {k, 1, n}]];
    P = Transpose[Q]; F = P.Q;
    a[m_] := Sum[F[[i]][[j]], {i, 1, m}, {j, 1, m}]
    Table[a[m], {m, 1, n}]  (* A202462 *)
    Table[a[m] - a[m - 1], {m, 1, n}]  (* A188516 *)
    (* Additional programs *)
    LinearRecurrence[{5,-6,-4,10,-2,-3,1},{1,5,21,70,214,614,1703},30] (* Harvey P. Dale, Jul 23 2015 *)
    With[{F=Fibonacci}, Table[F[n+2]*F[n+3] -2*F[n+4] +n+4, {n,30}]] (* G. C. Greubel, Jul 23 2019 *)
  • PARI
    vector(30, n, f=fibonacci; f(n+2)*f(n+3) -2*f(n+4) +n+4) \\ G. C. Greubel, Jul 23 2019
    
  • Sage
    f=fibonacci; [f(n+2)*f(n+3)-2*f(n+4) +n+4 for n in (1..30)] # G. C. Greubel, Jul 23 2019
    

Formula

G.f.: x*(1+2*x^2-x^3)/((1+x)*(1-3*x+x^2)*(1-x-x^2)*(1-x)^2). - R. J. Mathar, Dec 20 2011
a(n) = Fibonacci(n+2)*Fibonacci(n+3) - 2*Fibonacci(n+4) + n + 4. - G. C. Greubel, Jul 23 2019

A193722 Triangular array: the fusion of (x+1)^n and (x+2)^n; see Comments for the definition of fusion.

Original entry on oeis.org

1, 1, 2, 1, 5, 6, 1, 8, 21, 18, 1, 11, 45, 81, 54, 1, 14, 78, 216, 297, 162, 1, 17, 120, 450, 945, 1053, 486, 1, 20, 171, 810, 2295, 3888, 3645, 1458, 1, 23, 231, 1323, 4725, 10773, 15309, 12393, 4374, 1, 26, 300, 2016, 8694, 24948, 47628, 58320, 41553, 13122
Offset: 0

Views

Author

Clark Kimberling, Aug 04 2011

Keywords

Comments

Suppose that p = p(n)*x^n + p(n-1)*x^(n-1) + ... + p(1)*x + p(0) is a polynomial and that Q is a sequence of polynomials
...
q(k,x)=t(k,0)*x^k+t(k,1)*x^(k-1)+...+t(k,k-1)*x+t(k,k),
...
for k=0,1,2,... The Q-upstep of p is the polynomial given by
...
U(p) = p(n)*q(n+1,x) + p(n-1)*q(n,x) + ... + p(0)*q(1,x); note that q(0,x) does not appear.
...
Now suppose that P=(p(n,x)) and Q=(q(n,x)) are sequences of polynomials, where n indicates degree. The fusion of P by Q, denoted by P**Q, is introduced here as the sequence W=(w(n,x)) of polynomials defined by w(0,x)=1 and w(n+1,x)=U(p(n,x)).
...
Strictly speaking, ** is an operation on sequences of polynomials. However, if P and Q are regarded as numerical triangles (e.g., coefficients of polynomials), then ** can be regarded as an operation on numerical triangles. In this case, row (n+1) of P**Q, for n >= 0, is given by the matrix product P(n)*QQ(n), where P(n)=(p(n,n)...p(n,n-1)......p(n,1), p(n,0)) and QQ(n) is the (n+1)-by-(n+2) matrix given by
...
q(n+1,0) .. q(n+1,1)........... q(n+1,n) .... q(n+1,n+1)
0 ......... q(n,0)............. q(n,n-1) .... q(n,n)
0 ......... 0.................. q(n-1,n-2) .. q(n-1,n-1)
...
0 ......... 0.................. q(2,1) ...... q(2,2)
0 ......... 0 ................. q(1,0) ...... q(1,1);
here, the polynomial q(k,x) is taken to be
q(k,0)*x^k + q(k,1)x^(k-1) + ... + q(k,k)*x+q(k,k-1); i.e., "q" is used instead of "t".
...
If s=(s(1),s(2),s(3),...) is a sequence, then the infinite square matrix indicated by
s(1)...s(2)...s(3)...s(4)...s(5)...
..0....s(1)...s(2)...s(3)...s(4)...
..0......0....s(1)...s(2)...s(3)...
..0......0.......0...s(1)...s(2)...
is the self-fusion matrix of s; e.g., A202453, A202670.
...
Example: let p(n,x)=(x+1)^n and q(n,x)=(x+2)^n. Then
...
w(0,x) = 1 by definition of W
w(1,x) = U(p(0,x)) = U(1) = p(0,0)*q(1,x) = 1*(x+2) = x+2;
w(2,x) = U(p(1,x)) = U(x+1) = q(2,x) + q(1,x) = x^2+5x+6;
w(3,x) = U(p(2,x)) = U(x^2+2x+1) = q(3,x) + 2q(2,x) + q(1,x) = x^3+8x^2+21x+18;
...
From these first 4 polynomials in the sequence P**Q, we can write the first 4 rows of P**Q when P, Q, and P**Q are regarded as triangles:
1;
1, 2;
1, 5, 6;
1, 8, 21, 18;
...
Generally, if P and Q are the sequences given by p(n,x)=(ax+b)^n and q(n,x)=(cx+d)^n, then P**Q is given by (cx+d)(bcx+a+bd)^n.
...
In the following examples, r(P**Q) is the mirror of P**Q, obtained by reversing the rows of P**Q.
...
..P...........Q.........P**Q.......r(P**Q)
(x+1)^n.....(x+1)^n.....A081277....A118800 (unsigned)
(x+1)^n.....(x+2)^n.....A193722....A193723
(x+2)^n.....(x+1)^n.....A193724....A193725
(x+2)^n.....(x+2)^n.....A193726....A193727
(x+2)^n.....(2x+1)^n....A193728....A193729
(2x+1)^n....(x+1)^n.....A038763....A136158
(2x+1)^n....(2x+1)^n....A193730....A193731
(2x+1)^n,...(x+1)^n.....A193734....A193735
...
Continuing, let u denote the polynomial x^n+x^(n-1)+...+x+1, and let Fibo[n,x] denote the n-th Fibonacci polynomial.
...
P.............Q.........P**Q.......r(P**Q)
Fib[n+1,x]...(x+1)^n....A193736....A193737
u.............u.........A193738....A193739
u**u..........u**u......A193740....A193741
...
Regarding A193722:
col 1 ..... A000012
col 2 ..... A016789
col 3 ..... A081266
w(n,n) .... A025192
w(n,n-1) .. A081038
...
Associated with "upstep" as defined above is "downstep" defined at A193842 in connection with fission.

Examples

			First six rows:
  1;
  1,   2;
  1,   5,   6;
  1,   8,  21,  18;
  1,  11,  45,  81,  54;
  1,  14,  78, 216, 297, 162;
		

Crossrefs

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> 3^(k-1)*( Binomial(n-1,k) + 2*Binomial(n,k) ) ))); # G. C. Greubel, Feb 18 2020
  • Magma
    [3^(k-1)*( Binomial(n-1,k) + 2*Binomial(n,k) ): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
    
  • Maple
    fusion := proc(p, q, n) local d, k;
    p(n-1,0)*q(n,x)+add(coeff(p(n-1,x),x^k)*q(n-k,x), k=1..n-1);
    [1,seq(coeff(%,x,n-1-k), k=0..n-1)] end:
    p := (n, x) -> (x + 1)^n; q := (n, x) -> (x + 2)^n;
    A193722_row := n -> fusion(p, q, n);
    for n from 0 to 5 do A193722_row(n) od; # Peter Luschny, Jul 24 2014
  • Mathematica
    (* First program *)
    z = 9; a = 1; b = 1; c = 1; d = 2;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193722 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]] (* A193723 *)
    (* Second program *)
    Table[3^(k-1)*(Binomial[n-1,k] +2*Binomial[n,k]), {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
  • PARI
    T(n,k) = 3^(k-1)*(binomial(n-1,k) +2*binomial(n,k)); \\ G. C. Greubel, Feb 18 2020
    
  • Sage
    def fusion(p, q, n):
        F = p(n-1,0)*q(n,x)+add(expand(p(n-1,x)).coefficient(x,k)*q(n-k,x) for k in (1..n-1))
        return [1]+[expand(F).coefficient(x,n-1-k) for k in (0..n-1)]
    A193842_row = lambda k: fusion(lambda n,x: (x+1)^n, lambda n,x: (x+2)^n, k)
    for n in range(7): A193842_row(n) # Peter Luschny, Jul 24 2014
    

Formula

Triangle T(n,k), read by rows, given by [1,0,0,0,0,0,0,0,...] DELTA [2,1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 04 2011
T(n,k) = 3*T(n-1,k-1) + T(n-1,k) with T(0,0)=T(1,0)=1 and T(1,1)=2. - Philippe Deléham, Oct 05 2011
T(n, k) = 3^(k-1)*( binomial(n-1,k) + 2*binomial(n,k) ). - G. C. Greubel, Feb 18 2020

A204016 Symmetric matrix based on f(i,j) = max(j mod i, i mod j), by antidiagonals.

Original entry on oeis.org

0, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 2, 0, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 0, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 0, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 0, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 0, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 7
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2012

Keywords

Comments

A204016 represents the matrix M given by f(i,j) = max{(j mod i), (i mod j)} for i >= 1 and j >= 1. See A204017 for characteristic polynomials of principal submatrices of M, with interlacing zeros.
Guide to symmetric matrices M based on functions f(i,j) and characteristic polynomial sequences (c.p.s.) with interlaced zeros:
f(i,j)..........................M.........c.p.s.
C(i+j,j)........................A007318...A045912
min(i,j)........................A003983...A202672
max(i,j)........................A051125...A203989
(i+j)*min(i,j)..................A203990...A203991
|i-j|...........................A049581...A203993
max(i-j+1,j-i+1)................A143182...A203992
min(i-j+1,j-i+1)................A203994...A203995
min(i(j+1),j(i+1))..............A203996...A203997
max(i(j+1)-1,j(i+1)-1)..........A203998...A203999
min(i(j+1)-1,j(i+1)-1)..........A204000...A204001
min(2i+j,i+2j)..................A204002...A204003
max(2i+j-2,i+2j-2)..............A204004...A204005
min(2i+j-2,i+2j-2)..............A204006...A204007
max(3i+j-3,i+3j-3)..............A204008...A204011
min(3i+j-3,i+3j-3)..............A204012...A204013
min(3i-2,3j-2)..................A204028...A204029
1+min(j mod i, i mod j).........A204014...A204015
max(j mod i, i mod j)...........A204016...A204017
1+max(j mod i, i mod j).........A204018...A204019
min(i^2,j^2)....................A106314...A204020
min(2i-1, 2j-1).................A157454...A204021
max(2i-1, 2j-1).................A204022...A204023
min(i(i+1)/2,j(j+1)/2)..........A106255...A204024
gcd(i,j)........................A003989...A204025
gcd(i+1,j+1)....................A204030...A204111
min(F(i+1),F(j+1)),F=A000045....A204026...A204027
gcd(F(i+1),F(j+1)),F=A000045....A204112...A204113
gcd(L(i),L(j)),L=A000032........A204114...A204115
gcd(2^i-1,2^j-2)................A204116...A204117
gcd(prime(i),prime(j))..........A204118...A204119
gcd(prime(i+1),prime(j+1))......A204120...A204121
gcd(2^(i-1),2^(j-1))............A144464...A204122
max(floor(i/j),floor(j/i))......A204123...A204124
min(ceiling(i/j),ceiling(j/i))..A204143...A204144
Delannoy matrix.................A008288...A204135
max(2i-j,2j-i)..................A204154...A204155
-1+max(3i-j,3j-i)...............A204156...A204157
max(3i-2j,3j-2i)................A204158...A204159
floor((i+1)/2)..................A204164...A204165
ceiling((i+1)/2)................A204166...A204167
i+j.............................A003057...A204168
i+j-1...........................A002024...A204169
i*j.............................A003991...A204170
..abbreviation below: AOE means "all 1's except"
AOE f(i,i)=i....................A204125...A204126
AOE f(i,i)=A000045(i+1).........A204127...A204128
AOE f(i,i)=A000032(i)...........A204129...A204130
AOE f(i,i)=2i-1.................A204131...A204132
AOE f(i,i)=2^(i-1)..............A204133...A204134
AOE f(i,i)=3i-2.................A204160...A204161
AOE f(i,i)=floor((i+1)/2).......A204162...A204163
...
Other pairs (M, c.p.s.): (A204171, A204172) to (A204183, A204184)
See A202695 for a guide to choices of symmetric matrix M for which the zeros of the characteristic polynomials are all positive.

Examples

			Northwest corner:
  0 1 1 1 1 1 1 1
  0 1 2 2 2 2 2 2
  1 2 0 3 3 3 3 3
  1 2 3 0 4 4 4 4
  1 2 3 4 0 5 5 5
  1 2 3 4 5 0 6 6
  1 2 3 4 5 6 0 7
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Max[Mod[i, j], Mod[j, i]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
    {n, 1, 12}, {i, 1, n}]]  (* A204016 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]               (* A204017 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A188516 Number of nX2 binary arrays without the pattern 1 1 0 diagonally, vertically or horizontally.

Original entry on oeis.org

4, 16, 49, 144, 400, 1089, 2916, 7744, 20449, 53824, 141376, 370881, 972196, 2547216, 6671889, 17472400, 45751696, 119793025, 313644100, 821166336, 2149898689, 5628600576, 14736017664, 38579637889, 101003196100, 264430435984
Offset: 1

Views

Author

R. H. Hardin, Apr 02 2011

Keywords

Comments

Column 2 of A188523

Examples

			Some solutions for 3X2
..0..1....0..1....0..0....0..0....1..0....0..1....1..0....0..1....0..0....0..1
..0..0....0..0....0..0....0..1....1..1....1..0....0..1....0..1....1..0....1..0
..1..1....0..0....0..1....1..0....1..1....0..0....1..0....1..1....0..0....0..1
		

Formula

Empirical: a(n)=4*a(n-1)-2*a(n-2)-6*a(n-3)+4*a(n-4)+2*a(n-5)-a(n-6).
Conjecture: a(n) = (F(n+3) - 1)^2, where F = A000045 (Fibonacci numbers). - Clark Kimberling, Jun 21 2016
Assuming the conjecture, define b(1) = 1 and b(n) = a(n-1) for n > 1. Then b(n) = Sum{F(i,j): (i=n and 1<=j<=n) or (j=n and 1<=i<=n)}, where F is the Fibonacci fusion array, A202453. - Clark Kimberling, Jun 21 2016
G.f. for (b(n)): -x*(-1+x^3-2*x^2) / ( (x-1)*(1+x)*(x^2-3*x+1)*(x^2+x-1) ). - R. J. Mathar, Dec 20 2011
b(n) = -2*(-1)^n/5 - 2*Fibonacci(n+2) + Lucas(2*n+4)/5 + 1. - Ehren Metcalfe, Mar 26 2016

A204164 Symmetric matrix based on f(i,j) = floor((i+j)/2), by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2012

Keywords

Comments

A204164 represents the matrix M given by f(i,j) = floor((i+j)/2) for i >= 1 and j >= 1. See A204165 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.
k appears 4k-1 times, k > 0. - Boris Putievskiy, Jun 12 2024
Number of numbers of the form 2k^2+k+1 <= n, for k = 0,1,2,... - Wesley Ivan Hurt, Jun 19 2024

Examples

			Northwest corner:
  1 1 2 2 3 3 4 4
  1 2 2 3 3 4 4 5
  2 2 3 3 4 4 5 5
  2 3 3 4 4 5 5 6
  3 3 4 4 5 5 6 6
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Floor[(i + j)/2];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8 X 8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i], {n, 1, 15}, {i, 1, n}]]  (* this sequence *)
      (* or *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204165 *)
    TableForm[Table[c[n], {n, 1, 10}]]
      (* or *)
    a[n_] = Ceiling[(Sqrt[8*n + 1] - 1)/4];
    Nmax = 21; Table[a[n], {n, 1, Nmax}] (* Boris Putievskiy, Jun 12 2024 *)
  • Python
    from math import isqrt
    def A204164(n): return (m:=isqrt(n>>1))+(n>m*((m<<1)+1)) # Chai Wah Wu, Nov 14 2024

Formula

a(n) = ceiling((sqrt(8*n+1)-1)/4). - Boris Putievskiy, Jun 12 2024
a(n) = Sum_{k=1..n} [c(k) = c(k-1)+1], where c(n) = floor(sqrt(2n)+1/2) mod 2 = A057211(n) and [] is the Iverson bracket. - Wesley Ivan Hurt, Jun 23 2024
a(n) = m+1 if n>m(2m+1) and a(n) = m otherwise where m = floor(sqrt(n/2)). - Chai Wah Wu, Nov 14 2024

A204008 Symmetric matrix based on f(i,j) = max{3i+j-3,i+3j-3}, by antidiagonals.

Original entry on oeis.org

1, 4, 4, 7, 5, 7, 10, 8, 8, 10, 13, 11, 9, 11, 13, 16, 14, 12, 12, 14, 16, 19, 17, 15, 13, 15, 17, 19, 22, 20, 18, 16, 16, 18, 20, 22, 25, 23, 21, 19, 17, 19, 21, 23, 25, 28, 26, 24, 22, 20, 20, 22, 24, 26, 28, 31, 29, 27, 25, 23, 21, 23, 25, 27, 29, 31, 34, 32, 30
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2012

Keywords

Comments

A204008 represents the matrix M given by f(i,j)=max{3i+j-3,i+3j-3}for i>=1 and j>=1. See A204011 for characteristic polynomials of principal submatrices of M, with interlacing zeros.
General case A206772. Let m be natural number. Table T(n,k)=max{m*n+k-m,n+m*k-m} read by antidiagonals.
For m=1 the result is A002024,
for m=2 the result is A204004,
for m=3 the result is A204008,
for m=4 the result is A206772. - Boris Putievskiy, Jan 24 2013

Examples

			Northwest corner:
   1,  4,  7, 10
   4,  5,  8, 11
   7,  8,  9, 12
  10, 11, 12, 13
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Max[3 i + j - 3, 3 j + i - 3];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
    {n, 1, 12}, {i, 1, n}]]   (* A204008 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                (* A204011 *)
    TableForm[Table[c[n], {n, 1, 10}]]

Formula

From Boris Putievskiy, Jan 24 2013: (Start)
For the general case, a(n) = m*A002024(n) + (m-1)*max{-A002260(n),-A004736(n)}.
a(n) = m*(t+1) + (m-1)*max{t*(t+1)/2-n,n-(t*t+3*t+4)/2}, where t=floor((-1+sqrt(8*n-7))/2).
For m=3, a(n) = 3*(t+1) + 2*max{t*(t+1)/2-n,n-(t*t+3*t+4)/2}, where t=floor((-1+sqrt(8*n-7))/2). (End)

A204154 Symmetric matrix based on f(i,j) = max(2i-j, 2j-i), by antidiagonals.

Original entry on oeis.org

1, 3, 3, 5, 2, 5, 7, 4, 4, 7, 9, 6, 3, 6, 9, 11, 8, 5, 5, 8, 11, 13, 10, 7, 4, 7, 10, 13, 15, 12, 9, 6, 6, 9, 12, 15, 17, 14, 11, 8, 5, 8, 11, 14, 17, 19, 16, 13, 10, 7, 7, 10, 13, 16, 19, 21, 18, 15, 12, 9, 6, 9, 12, 15, 18, 21, 23, 20, 17, 14, 11, 8, 8, 11, 14, 17, 20
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2012

Keywords

Comments

A204154 represents the matrix M given by f(i,j) = max(2i-j, 2j-i) for i >= 1 and j >= 1. See A204155 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.
From Nathaniel J. Strout, Nov 14 2019: (Start)
The sum of the terms in the n-th "_|" shape is given by the octagonal numbers, A000567. For example,
5,
4,
5,4,3,
is considered the 3rd such shape.
The sum of the terms in the n-th antidiagonal is the absolute value of the (n+1)-th term of A266085. (End)

Examples

			Northwest corner:
  1, 3, 5, 7, 9, ...
  3, 2, 4, 6, 8, ...
  5, 4, 3, 5, 7, ...
  7, 6, 5, 4, 6, ...
  9, 8, 7, 6, 5, ...
  ...
		

Crossrefs

Programs

  • Maple
    seq(seq(max(3*j-m,2*m-3*j),j=1..m-1),m=2..19); # Robert Israel, Dec 03 2017
  • Mathematica
    f[i_, j_] := Max[2 i - j, 2 j - i];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204154 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204155 *)
    TableForm[Table[c[n], {n, 1, 10}]]

Formula

G.f. as array: (1 + x + y - 7*y*x + 2*y*x^2 + 2*y^2*x)*x*y/((1-x*y)*(1-x)^2*(1-y)^2). - Robert Israel, Dec 03 2017

A202451 Upper triangular Fibonacci matrix, by SW antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 1, 3, 0, 0, 1, 2, 5, 0, 0, 0, 1, 3, 8, 0, 0, 0, 1, 2, 5, 13, 0, 0, 0, 0, 1, 3, 8, 21, 0, 0, 0, 0, 1, 2, 5, 13, 34, 0, 0, 0, 0, 0, 1, 3, 8, 21, 55, 0, 0, 0, 0, 0, 1, 2, 5, 13, 34, 89, 0, 0, 0, 0, 0, 0, 1, 3, 8, 21, 55, 144
Offset: 1

Views

Author

Clark Kimberling, Dec 19 2011

Keywords

Examples

			Northwest corner:
1...1...2...3...5...8...13...21...34
0...1...1...2...3...5....8...13...21
0...0...1...1...2...3....5....8...13
0...0...0...1...1...2....3....5....8
		

Crossrefs

Programs

  • Mathematica
    n = 12;
    Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]];
    P = Transpose[Q]; F = P.Q;
    Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202451 as a sequence *)
    Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202452 as a sequence *)
    Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202453 as a sequence *)
    TableForm[Q]  (* A202451, upper triangular Fibonacci matrix *)
    TableForm[P]  (* A202452, lower triangular Fibonacci matrix *)
    TableForm[F]  (* A202453, Fibonacci self-fusion matrix *)
    TableForm[FactorInteger[F]]

Formula

Row n consists of n-1 zeros followed by the Fibonacci sequence (1, 1, 2, 3, 5, 8, ...).

A202503 Fibonacci self-fission matrix, by antidiagonals.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 8, 9, 8, 8, 8, 13, 14, 15, 13, 13, 13, 21, 23, 24, 24, 21, 21, 21, 34, 37, 39, 39, 39, 34, 34, 34, 55, 60, 63, 64, 63, 63, 55, 55, 55, 89, 97, 102, 103, 104, 102, 102, 89, 89, 89, 144, 157, 165, 167, 168, 168, 165, 165, 144, 144, 144
Offset: 1

Views

Author

Clark Kimberling, Dec 20 2011

Keywords

Comments

The Fibonacci self-fission matrix, F, is the fission P^^Q, where P and Q are the matrices given at A202502 and A202451. See A193842 for the definition of fission.
antidiagonal sums: (1, 3, 8, 18, 38, ...), A064831
diagonal (1, 5, 14, 39, ...), A119996
diagonal (2, 8, 23, 63, ...), A180664
diagonal (2, 5, 15, 39, ...), A059840
diagonal (3, 8, 24, 63, ...), A080097
diagonal (5, 13, 39, 102, ...), A080143
diagonal (8, 21, 63, 165, ...), A080144
All the principal submatrices are invertible, and the terms in the inverses are in {-3,-2,-1,0,1,2,3}.

Examples

			Northwest corner:
1....1....2....3....5.....8....13...21
2....3....5....8...13....21....34...55
3....5....9...14...23....37....60...97
5....8...15...24...39....63...102...165
8...13...24...39...64...103...167...270
		

Crossrefs

Programs

  • Mathematica
    n = 14;
    Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]];
    Qt = Transpose[Q]; P1 = Qt - IdentityMatrix[n];
    P = P1[[Range[2, n], Range[1, n]]];
    F = P.Q;
    Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202502 as a sequence *)
    Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202451 as a sequence *)
    Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202503 as a sequence *)
    TableForm[P]  (* A202502, modified lower triangular Fibonacci array *)
    TableForm[Q]  (* A202451, upper tri. Fibonacci array *)
    TableForm[F]  (* A202503, Fibonacci fission array *)
Showing 1-10 of 64 results. Next