cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A204155 Array read by rows: row n lists the coefficients of the characteristic polynomial of the n-th principal submatrix of max(2i-j, 2j-i), as in A204154.

Original entry on oeis.org

1, -1, -7, -3, 1, 33, 39, 6, -1, -135, -255, -125, -10, 1, 513, 1323, 1092, 305, 15, -1, -1863, -6075, -7047, -3444, -630, -21, 1, 6561, 25839, 38610, 27135, 8946, 1162, 28, -1, -22599, -104247, -190593, -175230
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.

Examples

			Top of the array:
     1,   -1;
    -7,   -3,    1;
    33,   39,    6,   -1;
  -135, -255, -125,  -10,    1;
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Maple
    f:= proc(n) local P,lambda,i;
    P:= (-1)^n*LinearAlgebra:-CharacteristicPolynomial(Matrix(n,n,(i,j) -> max(2*i-j,2*j-i)),lambda);
    seq(coeff(P,lambda,i),i=0..n);
    end proc:
    map(f, [$1..20]); # Robert Israel, Dec 03 2017
  • Mathematica
    f[i_, j_] := Max[2 i - j, 2 j - i];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204154 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204155 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A205373 s(A204154), where s(j)=(prime(j+1) + prime(j+2))/2.

Original entry on oeis.org

4, 4, 6, 4, 4, 6, 4, 4, 6, 6, 4, 6, 4, 4, 6, 18, 4, 12, 15, 6, 9, 4, 4, 6, 9, 4, 12, 6, 21, 4, 45, 18, 6, 26, 4, 6, 39, 4, 6, 6, 4, 18, 21, 6, 15, 4, 9, 12, 15, 6, 9, 4, 76, 6, 9, 4, 12, 6, 34, 4, 15, 72, 6, 12, 4, 6, 9, 4, 12, 6, 15, 4, 26, 12, 6, 26, 4, 15, 26, 6
Offset: 1

Views

Author

Clark Kimberling, Jan 26 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205153.)

A204236 Permanent of the n-th principal submatrix of A204154.

Original entry on oeis.org

1, 11, 219, 8353, 501441, 43953387, 5289422019, 837277689897, 168675250704201, 42143281220724723, 12789052583333211963, 4633606346714879986017, 1975686665736618600155505, 979311369588813584600206491, 558412149326539306097214853299, 362948190926517939498607117046169
Offset: 1

Views

Author

Clark Kimberling, Jan 13 2012

Keywords

Crossrefs

Cf. A204154.

Programs

  • Mathematica
    f[i_, j_] := Max[2 i - j, 2 j - i];  (* A204154 *)
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Permanent[m_] :=
      With[{a = Array[x, Length[m]]},
       Coefficient[Times @@ (m.a), Times @@ a]];
    Table[Permanent[m[n]], {n, 1, 14}]    (* A204236 *)

Extensions

a(15)-a(16) from Pontus von Brömssen, Mar 03 2024

A204016 Symmetric matrix based on f(i,j) = max(j mod i, i mod j), by antidiagonals.

Original entry on oeis.org

0, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 2, 0, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 0, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 0, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 0, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 0, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 7
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2012

Keywords

Comments

A204016 represents the matrix M given by f(i,j) = max{(j mod i), (i mod j)} for i >= 1 and j >= 1. See A204017 for characteristic polynomials of principal submatrices of M, with interlacing zeros.
Guide to symmetric matrices M based on functions f(i,j) and characteristic polynomial sequences (c.p.s.) with interlaced zeros:
f(i,j)..........................M.........c.p.s.
C(i+j,j)........................A007318...A045912
min(i,j)........................A003983...A202672
max(i,j)........................A051125...A203989
(i+j)*min(i,j)..................A203990...A203991
|i-j|...........................A049581...A203993
max(i-j+1,j-i+1)................A143182...A203992
min(i-j+1,j-i+1)................A203994...A203995
min(i(j+1),j(i+1))..............A203996...A203997
max(i(j+1)-1,j(i+1)-1)..........A203998...A203999
min(i(j+1)-1,j(i+1)-1)..........A204000...A204001
min(2i+j,i+2j)..................A204002...A204003
max(2i+j-2,i+2j-2)..............A204004...A204005
min(2i+j-2,i+2j-2)..............A204006...A204007
max(3i+j-3,i+3j-3)..............A204008...A204011
min(3i+j-3,i+3j-3)..............A204012...A204013
min(3i-2,3j-2)..................A204028...A204029
1+min(j mod i, i mod j).........A204014...A204015
max(j mod i, i mod j)...........A204016...A204017
1+max(j mod i, i mod j).........A204018...A204019
min(i^2,j^2)....................A106314...A204020
min(2i-1, 2j-1).................A157454...A204021
max(2i-1, 2j-1).................A204022...A204023
min(i(i+1)/2,j(j+1)/2)..........A106255...A204024
gcd(i,j)........................A003989...A204025
gcd(i+1,j+1)....................A204030...A204111
min(F(i+1),F(j+1)),F=A000045....A204026...A204027
gcd(F(i+1),F(j+1)),F=A000045....A204112...A204113
gcd(L(i),L(j)),L=A000032........A204114...A204115
gcd(2^i-1,2^j-2)................A204116...A204117
gcd(prime(i),prime(j))..........A204118...A204119
gcd(prime(i+1),prime(j+1))......A204120...A204121
gcd(2^(i-1),2^(j-1))............A144464...A204122
max(floor(i/j),floor(j/i))......A204123...A204124
min(ceiling(i/j),ceiling(j/i))..A204143...A204144
Delannoy matrix.................A008288...A204135
max(2i-j,2j-i)..................A204154...A204155
-1+max(3i-j,3j-i)...............A204156...A204157
max(3i-2j,3j-2i)................A204158...A204159
floor((i+1)/2)..................A204164...A204165
ceiling((i+1)/2)................A204166...A204167
i+j.............................A003057...A204168
i+j-1...........................A002024...A204169
i*j.............................A003991...A204170
..abbreviation below: AOE means "all 1's except"
AOE f(i,i)=i....................A204125...A204126
AOE f(i,i)=A000045(i+1).........A204127...A204128
AOE f(i,i)=A000032(i)...........A204129...A204130
AOE f(i,i)=2i-1.................A204131...A204132
AOE f(i,i)=2^(i-1)..............A204133...A204134
AOE f(i,i)=3i-2.................A204160...A204161
AOE f(i,i)=floor((i+1)/2).......A204162...A204163
...
Other pairs (M, c.p.s.): (A204171, A204172) to (A204183, A204184)
See A202695 for a guide to choices of symmetric matrix M for which the zeros of the characteristic polynomials are all positive.

Examples

			Northwest corner:
  0 1 1 1 1 1 1 1
  0 1 2 2 2 2 2 2
  1 2 0 3 3 3 3 3
  1 2 3 0 4 4 4 4
  1 2 3 4 0 5 5 5
  1 2 3 4 5 0 6 6
  1 2 3 4 5 6 0 7
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Max[Mod[i, j], Mod[j, i]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
    {n, 1, 12}, {i, 1, n}]]  (* A204016 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]               (* A204017 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A002414 Octagonal pyramidal numbers: a(n) = n*(n+1)*(2*n-1)/2.

Original entry on oeis.org

1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, 1386, 1794, 2275, 2835, 3480, 4216, 5049, 5985, 7030, 8190, 9471, 10879, 12420, 14100, 15925, 17901, 20034, 22330, 24795, 27435, 30256, 33264, 36465, 39865, 43470, 47286, 51319, 55575, 60060, 64780
Offset: 1

Views

Author

Keywords

Comments

Number of ways of covering a 2n X 2n lattice with 2n^2 dominoes with exactly 2 horizontal dominoes. - Yong Kong (ykong@curagen.com), May 06 2000
Equals binomial transform of [0, 1, 7, 6, 0, 0, 0, ...]. - Gary W. Adamson, Jun 14 2008, corrected Oct 25 2012
Sequence of the absolute values of the z^1 coefficients of the polynomials in the GF3 denominators of A156927. See A157704 for background information. - Johannes W. Meijer, Mar 07 2009
This sequence is related to A000326 by a(n) = n*A000326(n) - Sum_{i=0..n-1} A000326(i) and this is the case d=3 in the identity n*(n*(d*n-d+2)/2)-Sum_{k=0..n-1} k*(d*k-d+2)/2 = n*(n+1)*(2*d*n-2*d+3)/6. - Bruno Berselli, Apr 21 2010
2*a(n) gives the principal diagonal of the convolution array A213819. - Clark Kimberling, Jul 04 2012
Partial sums of the figurate octagonal numbers A000567. For each sequence with a linear recurrence with constant coefficients, the values reduced modulo some constant m generate a periodic sequence. For this sequence, these Pisano periods have length 1, 4, 3, 8, 5, 12, 7, 16, 9, 20, 11, 24, 13, 28, 15, 32, 17, ... for m >= 1. - Ant King, Oct 26 2012
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 773", based on the 5-celled von Neumann neighborhood. - Robert Price, May 23 2016
On a square grid of side length n+1, the number of embedded rectangles (where each side is greater than 1). For example, in a 2 X 2 square there is one rectangle, in a 3 X 3 square there are nine rectangles, etc. - Peter Woodward, Nov 26 2017
a(n) is the sum of the numbers in the n X n square array A204154(n). - Ali Sada, Jun 21 2019
Sum of all multiples of n and n+1 that are <= n^2. - Wesley Ivan Hurt, May 25 2023

Examples

			a(2) = 9 since there are 9 ways to cover a 4 X 4 lattice with 8 dominoes, 2 of which is horizontal and the other 6 are vertical. - Yong Kong (ykong@curagen.com), May 06 2000
G.f. = x + 9*x^2 + 30*x^3 + 70*x^4 + 135*x^5 + 231*x^6 + 364*x^7 + 540*x^8 + 765*x^9 + ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093563 (( 6, 1) Pascal, column m=3). A000567 (differences).
Cf. A156927, A157704. - Johannes W. Meijer, Mar 07 2009
Cf. A000326.
Cf. similar sequences listed in A237616.
Cf. A260234 (largest prime factor of a(n+1)).

Programs

  • Magma
    [n*(n+1)*(2*n-1)/2: n in [1..50]]; // Vincenzo Librandi, May 24 2016
  • Maple
    A002414 := n-> 1/2*n*(n+1)*(2*n-1): seq(A002414(n), n=1..100);
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,9,30,70},40] (* Harvey P. Dale, Apr 12 2013 *)
  • PARI
    {a(n) = (2*n - 1) * n * (n + 1) / 2} \\ Michael Somos, Mar 17 2011
    

Formula

a(n) = odd numbers * triangular numbers = (2*n-1)* binomial(n+1,2). - Xavier Acloque, Oct 27 2003
G.f.: x*(1+5*x)/(1-x)^4. [Conjectured by Simon Plouffe in his 1992 dissertation.]
a(n) = A000578(n) + A000217(n-1). - Kieren MacMillan, Mar 19 2007
a(-n) = -A160378(n). - Michael Somos, Mar 17 2011
From Ant King, Oct 26 2012: (Start)
a(n) = a(n-1) + n*(3*n-2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = n*A000326(n) - A002411(n-1), see Berselli's comment.
a(n) = (n+1)*(2*A000567(n)+n)/6.
a(n) = A000292(n) + 5*A000292(n-1) = binomial(n+2,3)+5*binomial(n+1,3).
a(n) = A002413(n) + A000292(n-1).
a(n) = A000217(n) + 6*A000292(n-1).
Sum_{n>=1} 1/a(n) = 2*(4*log(2)-1)/3 = 1.1817258148265...
(End)
a(n) = Sum_{i=0..n-1} (n-i)*(6*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: x*(2 + 7*x + 2*x^2)*exp(x)/2. - Ilya Gutkovskiy, May 23 2016
a(n) = A080851(6,n-1). - R. J. Mathar, Jul 28 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(Pi + 1 - 4*log(2))/3. - Amiram Eldar, Jul 02 2020

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 09 2000
Incorrect formula deleted by Ant King, Oct 04 2012

A266085 Alternating sum of heptagonal numbers.

Original entry on oeis.org

0, -1, 6, -12, 22, -33, 48, -64, 84, -105, 130, -156, 186, -217, 252, -288, 328, -369, 414, -460, 510, -561, 616, -672, 732, -793, 858, -924, 994, -1065, 1140, -1216, 1296, -1377, 1462, -1548, 1638, -1729, 1824, -1920, 2020, -2121, 2226, -2332, 2442, -2553
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2015

Keywords

Crossrefs

Unsigned terms give antidiagonal sums of A204154. - Nathaniel J. Strout, Nov 14 2019

Programs

  • Magma
    [((10*n^2+4*n-3)*(-1)^n+3)/8: n in [0..50]]; // Vincenzo Librandi, Dec 21 2015
    
  • Magma
    R:=PowerSeriesRing(Integers(), 50); [0] cat  Coefficients(R!(-x*(1 - 4*x)/((1 - x)*(1 + x)^3))); // Marius A. Burtea, Nov 13 2019
    
  • Mathematica
    Table[((10 n^2 + 4 n - 3) (-1)^n + 3)/8, {n, 0, 50}]
    CoefficientList[Series[(x - 4 x^2)/(x^4 + 2 x^3 - 2 x - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 21 2015 *)
    LinearRecurrence[{-2,0,2,1},{0,-1,6,-12},60] (* Harvey P. Dale, Jan 26 2023 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(-x*(1-4*x)/((1-x)*(1+x)^3))) \\ Altug Alkan, Dec 21 2015

Formula

G.f.: -x*(1 - 4*x)/((1 - x)*(1 + x)^3).
a(n) = ((10*n^2 + 4*n - 3)*(-1)^n + 3)/8.
a(n) = Sum_{k = 0..n} (-1)^k*A000566(k).
Lim_{n -> infinity} a(n + 1)/a(n) = -1.
a(n) = (-1)^n*A008728(5*n-5) for n>0. - Bruno Berselli, Dec 21 2015
E.g.f.: (1/8)*exp(-x)*(-3 + 3*exp(2*x) - 14*x + 10*x^2). - Stefano Spezia, Nov 13 2019
Showing 1-6 of 6 results.