A344376
Numbers that are both octagonal numbers (A000567) and octagonal pyramidal numbers (A002414).
Original entry on oeis.org
0, 1, 1045, 5985, 123395663059845, 774611255177760
Offset: 1
Cf.
A378361 (octagonal indices),
A378918 (octagonal pyramidal indices).
-
for(k=0, 1e5, if(ispolygonal(m=k*(k+1)*(2*k-1)/2, 8), print1(m", ")))
A322653
Numbers that are sums of consecutive octagonal pyramidal numbers (A002414).
Original entry on oeis.org
0, 1, 9, 10, 30, 39, 40, 70, 100, 109, 110, 135, 205, 231, 235, 244, 245, 364, 366, 436, 466, 475, 476, 540, 595, 730, 765, 800, 830, 839, 840, 904, 1045, 1135, 1270, 1305, 1340, 1370, 1379, 1380, 1386, 1669, 1794, 1810, 1900, 2035, 2105, 2135, 2144, 2145, 2275, 2350, 2431, 2714
Offset: 1
A322856
Number of compositions (ordered partitions) of n into octagonal pyramidal numbers (A002414).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 19, 24, 30, 37, 45, 54, 64, 76, 91, 110, 135, 166, 204, 250, 305, 370, 447, 539, 650, 787, 956, 1164, 1419, 1730, 2107, 2562, 3110, 3770, 4569, 5540, 6723, 8166, 9926, 12070, 14677, 17841, 21675
Offset: 0
-
nmax = 56; CoefficientList[Series[1/(1 - Sum[x^(k (k + 1) (2 k - 1)/2), {k, 1, nmax}]), {x, 0, nmax}], x]
A218327
Even octagonal pyramidal numbers (A002414).
Original entry on oeis.org
30, 70, 364, 540, 1386, 1794, 3480, 4216, 7030, 8190, 12420, 14100, 20034, 22330, 30256, 33264, 43470, 47286, 60060, 64780, 80410, 86130, 104904, 111720, 133926, 141934, 167860, 177156, 207090, 217770, 252000, 264160, 302974, 316710, 360396, 375804, 424650
Offset: 1
The sequence of octagonal pyramidal numbers A002414 begins 1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, … As the third even term is 364, then a(3) = 364.
-
LinearRecurrence[{1,3,-3,-3,3,1,-1},{30,70,364,540,1386,1794,3480},37]
A000567
Octagonal numbers: n*(3*n-2). Also called star numbers.
Original entry on oeis.org
0, 1, 8, 21, 40, 65, 96, 133, 176, 225, 280, 341, 408, 481, 560, 645, 736, 833, 936, 1045, 1160, 1281, 1408, 1541, 1680, 1825, 1976, 2133, 2296, 2465, 2640, 2821, 3008, 3201, 3400, 3605, 3816, 4033, 4256, 4485, 4720, 4961, 5208, 5461
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 38.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 1.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 19-20.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 123.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Raghavendra N. Bhat, Cristian Cobeli, and Alexandru Zaharescu, A lozenge triangulation of the plane with integers, arXiv:2403.10500 [math.NT], 2024.
- Francesco Brenti and Paolo Sentinelli, Wachs permutations, Bruhat order and weak order, arXiv:2212.04932 [math.CO], 2022.
- Cesar Ceballos and Viviane Pons, The s-weak order and s-permutahedra II: The combinatorial complex of pure intervals, arXiv:2309.14261 [math.CO], 2023. See p. 42.
- C. K. Cook and M. R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
- John Elias, Illustration: Hexagonal spiral grids based on generalized octagonal numbers; Illustration: Generalized Square-Octagonal Grids.
- John Elias, Illustration: Nesting Cube-frames; Nesting Cube Animation; Nesting-frames Decomposition; Factorial Compartmentalization.
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- Lancelot Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 36.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 342.
- Milan Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- R. Kemp, On the number of words in the language {w in Sigma* | w = w^R }^2, Discrete Math., 40 (1982), 225-234. See Table 1.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
- Kaie Kubjas, Luca Sodomaco, and Elias Tsigaridas, Exact solutions in low-rank approximation with zeros, arXiv:2010.15636 [math.AG], 2020.
- Viktor Levandovskyy, Christoph Koutschan, and Oleksandr Motsak, On Two-generated Non-commutative Algebras Subject to the Affine Relation, arXiv:1108.1108 [cs.SC], 2011.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Omar E. Pol, Illustration of initial terms of A000217, A000290, A000326, A000384, A000566, A000567.
- Leo Tavares, Illustration: Square Rays.
- Leo Tavares, Illustration: Twin Rectangular Rays.
- Leo Tavares, Illustration: Star Rows.
- Leo Tavares, Illustration: Split Stars.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
- Eric Weisstein's World of Mathematics, Octagonal Number.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Index to sequences related to polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([0..50], n -> n*(3*n-2)); # G. C. Greubel, Nov 15 2018
-
a000567 n = n * (3 * n - 2) -- Reinhard Zumkeller, Dec 20 2012
-
[n*(3*n-2) : n in [0..50]]; // Wesley Ivan Hurt, Oct 10 2021
-
A000567 := proc(n)
n*(3*n-2) ;
end proc:
seq(A000567(n), n=1..50) ;
-
Table[n (3 n - 2), {n, 0, 50}] (* Harvey P. Dale, May 06 2012 *)
Table[PolygonalNumber[RegularPolygon[8], n], {n, 0, 43}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
PolygonalNumber[8, Range[0, 20]] (* Eric W. Weisstein, Sep 07 2017 *)
LinearRecurrence[{3, -3, 1}, {1, 8, 21}, {0, 20}] (* Eric W. Weisstein, Sep 07 2017 *)
-
a(n)=n*(3*n-2) \\ Charles R Greathouse IV, Jun 10 2011
-
vector(50, n, n--; n*(3*n-2)) \\ G. C. Greubel, Nov 15 2018
-
# Intended to compute the initial segment of the sequence, not isolated terms.
def aList():
x, y = 1, 1
yield 0
while True:
yield x
x, y = x + y + 6, y + 6
A000567 = aList()
print([next(A000567) for i in range(49)]) # Peter Luschny, Aug 04 2019
-
[n*(3*n-2) for n in range(50)] # Gennady Eremin, Mar 10 2022
-
[n*(3*n-2) for n in range(50)] # G. C. Greubel, Nov 15 2018
A080851
Square array of pyramidal numbers, read by antidiagonals.
Original entry on oeis.org
1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 14, 20, 15, 1, 7, 18, 30, 35, 21, 1, 8, 22, 40, 55, 56, 28, 1, 9, 26, 50, 75, 91, 84, 36, 1, 10, 30, 60, 95, 126, 140, 120, 45, 1, 11, 34, 70, 115, 161, 196, 204, 165, 55, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 66, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286, 78
Offset: 0
Array begins (n>=0, k>=0):
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... A000217
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... A000292
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, ... A000330
1, 6, 18, 40, 75, 126, 196, 288, 405, 550, ... A002411
1, 7, 22, 50, 95, 161, 252, 372, 525, 715, ... A002412
1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ... A002413
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
See
A257199 for another version of this array.
-
vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^4,x,11),x,n),n,0,11),k,-1,10) VECTOR(VECTOR(comb(k+2,2)+comb(k+2,3)n, k, 0, 11), n, 0, 11)
-
A080851 := proc(n,k)
binomial(k+3,3)+(n-1)*binomial(k+2,3) ;
end proc:
seq( seq(A080851(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
-
pyramidalFigurative[ ngon_, rank_] := (3 rank^2 + rank^3 (ngon - 2) - rank (ngon - 5))/6; Table[ pyramidalFigurative[n-k-1, k], {n, 4, 15}, {k, n-3}] // Flatten (* Robert G. Wilson v, Sep 15 2015 *)
A237616
a(n) = n*(n + 1)*(5*n - 4)/2.
Original entry on oeis.org
0, 1, 18, 66, 160, 315, 546, 868, 1296, 1845, 2530, 3366, 4368, 5551, 6930, 8520, 10336, 12393, 14706, 17290, 20160, 23331, 26818, 30636, 34800, 39325, 44226, 49518, 55216, 61335, 67890, 74896, 82368, 90321, 98770, 107730, 117216, 127243, 137826, 148980, 160720
Offset: 0
After 0, the sequence is provided by the row sums of the triangle:
1;
2, 16;
3, 32, 31;
4, 48, 62, 46;
5, 64, 93, 92, 61;
6, 80, 124, 138, 122, 76;
7, 96, 155, 184, 183, 152, 91;
8, 112, 186, 230, 244, 228, 182, 106;
9, 128, 217, 276, 305, 304, 273, 212, 121;
10, 144, 248, 322, 366, 380, 364, 318, 242, 136; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 15*r-14 and T(r,c) = T(r-1,c)+T(r,r) = (r-c+1)*T(r,r), with r>=c>0.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (fifteenth row of the table).
Cf. sequences with formula n*(n+1)*(k*n-k+3)/6:
A000217 (k=0),
A000292 (k=1),
A000330 (k=2),
A002411 (k=3),
A002412 (k=4),
A002413 (k=5),
A002414 (k=6),
A007584 (k=7),
A007585 (k=8),
A007586 (k=9),
A007587 (k=10),
A050441 (k=11),
A172073 (k=12),
A177890 (k=13),
A172076 (k=14), this sequence (k=15),
A172078(k=16),
A237617 (k=17),
A172082 (k=18),
A237618 (k=19),
A172117(k=20),
A256718 (k=21),
A256716 (k=22),
A256645 (k=23),
A256646(k=24),
A256647 (k=25),
A256648 (k=26),
A256649 (k=27),
A256650(k=28).
-
List([0..40], n-> n*(n+1)*(5*n-4)/2); # G. C. Greubel, Aug 30 2019
-
[n*(n+1)*(5*n-4)/2: n in [0..40]];
-
I:=[0,1,18,66]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
-
seq(n*(n+1)*(5*n-4)/2, n=0..40); # G. C. Greubel, Aug 30 2019
-
Table[n(n+1)(5n-4)/2, {n, 0, 40}]
CoefficientList[Series[x (1+14x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
LinearRecurrence[{4,-6,4,-1},{0,1,18,66},50] (* Harvey P. Dale, Jan 11 2015 *)
-
a(n)=n*(n+1)*(5*n-4)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(n+1)*(5*n-4)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
A002419
4-dimensional figurate numbers: a(n) = (6*n-2)*binomial(n+2,3)/4.
Original entry on oeis.org
1, 10, 40, 110, 245, 476, 840, 1380, 2145, 3190, 4576, 6370, 8645, 11480, 14960, 19176, 24225, 30210, 37240, 45430, 54901, 65780, 78200, 92300, 108225, 126126, 146160, 168490, 193285, 220720, 250976, 284240, 320705, 360570, 404040, 451326, 502645, 558220
Offset: 1
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Eric Weisstein's World of Mathematics, Chordless Cycle.
- Eric Weisstein's World of Mathematics, Crown Graph.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
- Index to sequences related to pyramidal numbers.
Cf.
A093563 ((6, 1) Pascal, column m=4).
Cf.
A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.
-
List([1..40], n-> n*(n+1)*(n+2)*(3*n-1)/12); # G. C. Greubel, Jul 03 2019
-
/* A000027 convolved with A000567 (excluding 0): */ A000567:=func; [&+[(n-i+1)*A000567(i): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Dec 07 2012
-
CoefficientList[Series[(1+5*x)/(1-x)^5, {x,0,40}], x] (* Vincenzo Librandi, Jun 20 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 10, 40, 110, 245}, 40] (* Harvey P. Dale, Nov 30 2014 *)
Table[n(n+1)(n+2)(3n-1)/12, {n, 40}] (* Eric W. Weisstein, Jan 02 2018 *)
Table[Sum[2 x + 3 x^2 - 2 y, {x, 0, g}, {y, x, g}], {g, 1, 20}] (* Horst H. Manninger, Jun 20 2025 *)
-
a(n)=(3*n-1)*binomial(n+2,3)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
A002419_list, m = [], [6, 1, 1, 1, 1]
for _ in range(10**2):
A002419_list.append(m[-1])
for i in range(4):
m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
-
[n*(n+1)*(n+2)*(3*n-1)/12 for n in (1..40)] # G. C. Greubel, Jul 03 2019
A007584
9-gonal (or enneagonal) pyramidal numbers: a(n) = n*(n+1)*(7*n-4)/6.
Original entry on oeis.org
0, 1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, 1606, 2080, 2639, 3290, 4040, 4896, 5865, 6954, 8170, 9520, 11011, 12650, 14444, 16400, 18525, 20826, 23310, 25984, 28855, 31930, 35216, 38720, 42449, 46410, 50610, 55056, 59755, 64714, 69940, 75440, 81221
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Cf.
A093564 ((7, 1) Pascal, column m=3).
Cf. similar sequences listed in
A237616.
-
I:=[0, 1, 10, 34, 80]; [n le 5 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 10 2013
-
a:=n->sum((n+j)^2-(n+j), j=0..n): seq(a(n)/2, n=0..30); # Zerinvary Lajos, May 26 2008
-
Table[n*(n+1)(7n-4)/6, {n, 0,100}] (* Vladimir Joseph Stephan Orlovsky, Jun 25 2009 *)
LinearRecurrence[{4,-6,4,-1},{1,10,34,80},30] (* Ant King, Oct 27 2012 *)
CoefficientList[Series[x (1 + 6 x) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 10 2013 *)
-
A007584[n]:=n*(n+1)*(7*n-4)/6$
makelist(A007584[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
-
a(n) = n*(n+1)*(7*n-4)/6; \\ Michel Marcus, Mar 04 2014
A093563
(6,1)-Pascal triangle.
Original entry on oeis.org
1, 6, 1, 6, 7, 1, 6, 13, 8, 1, 6, 19, 21, 9, 1, 6, 25, 40, 30, 10, 1, 6, 31, 65, 70, 40, 11, 1, 6, 37, 96, 135, 110, 51, 12, 1, 6, 43, 133, 231, 245, 161, 63, 13, 1, 6, 49, 176, 364, 476, 406, 224, 76, 14, 1, 6, 55, 225, 540, 840, 882, 630, 300, 90, 15, 1, 6, 61, 280, 765, 1380
Offset: 0
Triangle begins
1;
6, 1;
6, 7, 1;
6, 13, 8, 1;
6, 19, 21, 9, 1;
6, 25, 40, 30, 10, 1;
...
- Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
- Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.
Row sums:
A005009(n-1), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 5 for n=2 and 0 else.
-
a093563 n k = a093563_tabl !! n !! k
a093563_row n = a093563_tabl !! n
a093563_tabl = [1] : iterate
(\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [6, 1]
-- Reinhard Zumkeller, Aug 31 2014
-
lim = 11; s = Series[(1 + 5*x)/(1 - x)^(m + 1), {x, 0, lim}]; t = Table[ CoefficientList[s, x], {m, 0, lim}]; Flatten[ Table[t[[j - k + 1, k]], {j, lim + 1}, {k, j, 1, -1}]] (* Jean-François Alcover, Sep 16 2011, after g.f. *)
-
from math import comb, isqrt
def A093563(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*(r+5*(r-a))//r if n else 1 # Chai Wah Wu, Nov 12 2024
Showing 1-10 of 52 results.
Comments