Original entry on oeis.org
1, 11, 45, 125, 280, 546, 966, 1590, 2475, 3685, 5291, 7371, 10010, 13300, 17340, 22236, 28101, 35055, 43225, 52745, 63756, 76406, 90850, 107250, 125775, 146601, 169911, 195895, 224750, 256680, 291896, 330616, 373065, 419475, 470085, 525141
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Murray R.Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
Cf.
A093564 ((7, 1) Pascal, column m=4).
Cf.
A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.
-
List([0..40], n-> (7*n+4)*Binomial(n+3,3)/4); # G. C. Greubel, Aug 29 2019
-
/* A000027 convolved with A001106 (excluding 0): */ A001106:=func; [&+[(n-i+1)*A001106(i): i in [1..n]]: n in [1..36]]; // Bruno Berselli, Dec 07 2012
-
seq((7*n+4)*binomial(n+3,3)/4, n=0..40); # G. C. Greubel, Aug 29 2019
-
Table[(7*n+4)*Binomial[n+3,3]/4, {n,0,40}] (* G. C. Greubel, Aug 29 2019 *)
LinearRecurrence[{5,-10,10,-5,1},{1,11,45,125,280},40] (* Harvey P. Dale, May 18 2023 *)
-
vector(40, n, (7*n-3)*binomial(n+2,3)/4) \\ G. C. Greubel, Aug 29 2019
-
[(7*n+4)*binomial(n+3,3)/4 for n in (0..40)] # G. C. Greubel, Aug 29 2019
A000326
Pentagonal numbers: a(n) = n*(3*n-1)/2.
Original entry on oeis.org
0, 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, 590, 651, 715, 782, 852, 925, 1001, 1080, 1162, 1247, 1335, 1426, 1520, 1617, 1717, 1820, 1926, 2035, 2147, 2262, 2380, 2501, 2625, 2752, 2882, 3015, 3151
Offset: 0
Illustration of initial terms:
.
. o
. o o
. o o o o
. o o o o o o
. o o o o o o o o o
. o o o o o o o o o o o
. o o o o o o o o o o o o o
. o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o
.
. 1 5 12 22 35
- _Philippe Deléham_, Mar 30 2013
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pages 2 and 311.
- Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; p. 129.
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 38, 40.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 1.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 291.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 284.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 64.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 52-53, 129-130, 132.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 7-10.
- André Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 186.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 98-100.
- Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.
- Daniel Mondot, Table of n, a(n) for n = 0..10000 (first 1000 terms by T. D. Noe)
- George E. Andrews, Euler's "De Partitio Numerorum", Bull. Amer. Math. Soc., 44 (No. 4, 2007), 561-573.
- S. Barbero, U. Cerruti and N. Murru, Transforming Recurrent Sequences by Using the Binomial and Invert Operators, J. Int. Seq. 13 (2010) # 10.7.7, section 4.4.
- Jordan Bell, Euler and the pentagonal number theorem, arXiv:math/0510054 [math.HO], 2005-2006.
- Anicius Manlius Severinus Boethius, De institutione arithmetica libri duo, Book 2, sections 13-14.
- Charles K. Cook and Michael R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
- Olivier Danvy, Summa Summarum: Moessner's Theorem without Dynamic Programming, arXiv:2412.03127 [cs.DM], 2024. See p. 33.
- Stephan Eberhart, Letter to N. J. A. Sloane, Jan 06 1978, also scanned copy of Mathematical-Physical Correspondence, No. 22, Christmas 1977.
- Leonhard Euler, De mirabilibus proprietatibus numerorum pentagonalium, par. 1
- Leonhard Euler, Observatio de summis divisorum p. 8.
- Leonhard Euler, An observation on the sums of divisors, arXiv:math/0411587 [math.HO], 2004, 2009. See p. 8.
- Leonhard Euler, On the remarkable properties of the pentagonal numbers, arXiv:math/0505373 [math.HO], 2005.
- Shyam Sunder Gupta, Beauty of Number 153, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 15, 399-410.
- Rodney T. Hansen, Arithmetic of pentagonal numbers, Fib. Quart., 8 (1970), 83-87.
- Alfred Hoehn, Illustration of initial terms of A000326, A005449, A045943, A115067
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 339
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Jangwon Ju and Daejun Kim, The pentagonal theorem of sixty-three and generalizations of Cauchy's lemma, arXiv:2010.16123 [math.NT], 2020.
- Bir Kafle, Florian Luca and Alain Togbé, Pentagonal and heptagonal repdigits, Annales Mathematicae et Informaticae. pp. 137-145.
- Sameen Ahmed Khan, Sums of the powers of reciprocals of polygonal numbers, Int'l J. of Appl. Math. (2020) Vol. 33, No. 2, 265-282.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
- Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
- R. P. Loh, A. G. Shannon and A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Omar E. Pol, Illustration of initial terms of A000217, A000290, A000326, A000384, A000566, A000567
- Cliff Reiter, Polygonal Numbers and Fifty One Stars, Lafayette College, Easton, PA (2019).
- Alison Schuetz and Gwyneth Whieldon, Polygonal Dissections and Reversions of Series, arXiv:1401.7194 [math.CO], 2014.
- W. Sierpiński, Sur les nombres pentagonaux, Bull. Soc. Royale Sciences Liège, 33 (No. 9-10, 1964), 513-517. [Annotated scanned copy]
- N. J. A. Sloane, Illustration of initial terms of A000217, A000290, A000326.
- Michel Waldschmidt, Continued fractions, Ecole de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18 - 29 mai 2015: Oujda (Maroc).
- Eric Weisstein's World of Mathematics, Andrásfai Graph.
- Eric Weisstein's World of Mathematics, Maximal Clique.
- Eric Weisstein's World of Mathematics, Pentagonal Number.
- Wikipedia, Mycielskian.
- Wikipedia, Pentagonal number
- Index entries for "core" sequences
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Index entries for two-way infinite sequences
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences
A000326,
A005449,
A045943,
A115067,
A140090,
A140091,
A059845,
A140672,
A140673,
A140674,
A140675,
A151542.
Cf.
A001318 (generalized pentagonal numbers),
A049452,
A033570,
A010815,
A034856,
A051340,
A004736,
A033568,
A049453,
A002411 (partial sums),
A033579.
See
A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.
Cf.
A240137: sum of n consecutive cubes starting from n^3.
Cf. similar sequences listed in
A022288.
-
List([0..50],n->n*(3*n-1)/2); # Muniru A Asiru, Mar 18 2019
-
a000326 n = n * (3 * n - 1) `div` 2 -- Reinhard Zumkeller, Jul 07 2012
-
[n*(3*n-1)/2 : n in [0..100]]; // Wesley Ivan Hurt, Oct 15 2015
-
A000326 := n->n*(3*n-1)/2: seq(A000326(n), n=0..100);
A000326:=-(1+2*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]-a[n-2]+3 od: seq(a[n], n=0..50); # Miklos Kristof, Zerinvary Lajos, Feb 18 2008
-
Table[n (3 n - 1)/2, {n, 0, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
Array[# (3 # - 1)/2 &, 47, 0] (* Zerinvary Lajos, Jul 10 2009 *)
LinearRecurrence[{3, -3, 1}, {0, 1, 5}, 61] (* Harvey P. Dale, Dec 27 2011 *)
pentQ[n_] := IntegerQ[(1 + Sqrt[24 n + 1])/6]; pentQ[0] = True; Select[Range[0, 3200], pentQ@# &] (* Robert G. Wilson v, Mar 31 2014 *)
Join[{0}, Accumulate[Range[1, 312, 3]]] (* Harvey P. Dale, Mar 26 2016 *)
(* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[5], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
CoefficientList[Series[x (-1 - 2 x)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
PolygonalNumber[5, Range[0, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
-
a(n)=n*(3*n-1)/2
-
vector(100, n, n--; binomial(3*n, 2)/3) \\ Altug Alkan, Oct 06 2015
-
is_a000326(n) = my(s); n==0 || (issquare (24*n+1, &s) && s%6==5); \\ Hugo Pfoertner, Aug 03 2023
-
# Intended to compute the initial segment of the sequence, not isolated terms.
def aList():
x, y = 1, 1
yield 0
while True:
yield x
x, y = x + y + 3, y + 3
A000326 = aList()
print([next(A000326) for i in range(47)]) # Peter Luschny, Aug 04 2019
A001106
9-gonal (or enneagonal or nonagonal) numbers: a(n) = n*(7*n-5)/2.
Original entry on oeis.org
0, 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 396, 474, 559, 651, 750, 856, 969, 1089, 1216, 1350, 1491, 1639, 1794, 1956, 2125, 2301, 2484, 2674, 2871, 3075, 3286, 3504, 3729, 3961, 4200, 4446, 4699, 4959, 5226, 5500, 5781, 6069, 6364
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe and William A. Tedeschi, Table of n, a(n) for n = 0..10000 (1000 terms were computed by T. D. Noe)
- S. Barbero, U. Cerruti and N. Murru, Transforming Recurrent Sequences by Using the Binomial and Invert Operators, J. Int. Seq. 13 (2010) # 10.7.7, section 4.4.
- C. K. Cook and M. R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 343
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Nonagonal Number.
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
a001106 n = length [(x,y) | x <- [-n+1..n-1], y <- [-n+1..n-1], x + y <= n]
-- Reinhard Zumkeller, Jan 23 2012
-
a001106 n = n*(7*n-5) `div` 2 -- James Spahlinger, Oct 18 2012
-
Table[n(7n - 5)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 1, 9}, 50] (* Harvey P. Dale, Nov 06 2011 *)
(* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[9], n], {n, 0, 43}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
PolygonalNumber[9,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 19 2019 *)
-
a(n)=n*(7*n-5)/2 \\ Charles R Greathouse IV, Jun 10 2011
-
def aList(): # Intended to compute the initial segment of the sequence, not isolated terms.
x, y = 1, 1
yield 0
while True:
yield x
x, y = x + y + 7, y + 7
A001106 = aList()
print([next(A001106) for i in range(49)]) # Peter Luschny, Aug 04 2019
A080851
Square array of pyramidal numbers, read by antidiagonals.
Original entry on oeis.org
1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 14, 20, 15, 1, 7, 18, 30, 35, 21, 1, 8, 22, 40, 55, 56, 28, 1, 9, 26, 50, 75, 91, 84, 36, 1, 10, 30, 60, 95, 126, 140, 120, 45, 1, 11, 34, 70, 115, 161, 196, 204, 165, 55, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 66, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286, 78
Offset: 0
Array begins (n>=0, k>=0):
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... A000217
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... A000292
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, ... A000330
1, 6, 18, 40, 75, 126, 196, 288, 405, 550, ... A002411
1, 7, 22, 50, 95, 161, 252, 372, 525, 715, ... A002412
1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ... A002413
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
See
A257199 for another version of this array.
-
vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^4,x,11),x,n),n,0,11),k,-1,10) VECTOR(VECTOR(comb(k+2,2)+comb(k+2,3)n, k, 0, 11), n, 0, 11)
-
A080851 := proc(n,k)
binomial(k+3,3)+(n-1)*binomial(k+2,3) ;
end proc:
seq( seq(A080851(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
-
pyramidalFigurative[ ngon_, rank_] := (3 rank^2 + rank^3 (ngon - 2) - rank (ngon - 5))/6; Table[ pyramidalFigurative[n-k-1, k], {n, 4, 15}, {k, n-3}] // Flatten (* Robert G. Wilson v, Sep 15 2015 *)
A237616
a(n) = n*(n + 1)*(5*n - 4)/2.
Original entry on oeis.org
0, 1, 18, 66, 160, 315, 546, 868, 1296, 1845, 2530, 3366, 4368, 5551, 6930, 8520, 10336, 12393, 14706, 17290, 20160, 23331, 26818, 30636, 34800, 39325, 44226, 49518, 55216, 61335, 67890, 74896, 82368, 90321, 98770, 107730, 117216, 127243, 137826, 148980, 160720
Offset: 0
After 0, the sequence is provided by the row sums of the triangle:
1;
2, 16;
3, 32, 31;
4, 48, 62, 46;
5, 64, 93, 92, 61;
6, 80, 124, 138, 122, 76;
7, 96, 155, 184, 183, 152, 91;
8, 112, 186, 230, 244, 228, 182, 106;
9, 128, 217, 276, 305, 304, 273, 212, 121;
10, 144, 248, 322, 366, 380, 364, 318, 242, 136; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 15*r-14 and T(r,c) = T(r-1,c)+T(r,r) = (r-c+1)*T(r,r), with r>=c>0.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (fifteenth row of the table).
Cf. sequences with formula n*(n+1)*(k*n-k+3)/6:
A000217 (k=0),
A000292 (k=1),
A000330 (k=2),
A002411 (k=3),
A002412 (k=4),
A002413 (k=5),
A002414 (k=6),
A007584 (k=7),
A007585 (k=8),
A007586 (k=9),
A007587 (k=10),
A050441 (k=11),
A172073 (k=12),
A177890 (k=13),
A172076 (k=14), this sequence (k=15),
A172078(k=16),
A237617 (k=17),
A172082 (k=18),
A237618 (k=19),
A172117(k=20),
A256718 (k=21),
A256716 (k=22),
A256645 (k=23),
A256646(k=24),
A256647 (k=25),
A256648 (k=26),
A256649 (k=27),
A256650(k=28).
-
List([0..40], n-> n*(n+1)*(5*n-4)/2); # G. C. Greubel, Aug 30 2019
-
[n*(n+1)*(5*n-4)/2: n in [0..40]];
-
I:=[0,1,18,66]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
-
seq(n*(n+1)*(5*n-4)/2, n=0..40); # G. C. Greubel, Aug 30 2019
-
Table[n(n+1)(5n-4)/2, {n, 0, 40}]
CoefficientList[Series[x (1+14x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
LinearRecurrence[{4,-6,4,-1},{0,1,18,66},50] (* Harvey P. Dale, Jan 11 2015 *)
-
a(n)=n*(n+1)*(5*n-4)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(n+1)*(5*n-4)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
A007585
10-gonal (or decagonal) pyramidal numbers: a(n) = n*(n + 1)*(8*n - 5)/6.
Original entry on oeis.org
0, 1, 11, 38, 90, 175, 301, 476, 708, 1005, 1375, 1826, 2366, 3003, 3745, 4600, 5576, 6681, 7923, 9310, 10850, 12551, 14421, 16468, 18700, 21125, 23751, 26586, 29638, 32915, 36425, 40176, 44176, 48433, 52955, 57750
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Cf. similar sequences listed in
A237616.
-
List([0..40], n-> n*(n+1)*(8*n-5)/6); # G. C. Greubel, Aug 30 2019
-
[n*(n+1)*(8*n-5)/6: n in [0..40]]; // G. C. Greubel, Aug 30 2019
-
seq(n*(n+1)*(8*n-5)/6, n=0..40); # G. C. Greubel, Aug 30 2019
-
Table[n(n+1)(8n-5)/6, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4,-6,4,-1},{0,1,11,38},40] (* Harvey P. Dale, Dec 20 2011 *)
-
a(n)=(8*n^3+3*n^2-5*n)/6 \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(n+1)*(8*n-5)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
A093564
(7,1) Pascal triangle.
Original entry on oeis.org
1, 7, 1, 7, 8, 1, 7, 15, 9, 1, 7, 22, 24, 10, 1, 7, 29, 46, 34, 11, 1, 7, 36, 75, 80, 45, 12, 1, 7, 43, 111, 155, 125, 57, 13, 1, 7, 50, 154, 266, 280, 182, 70, 14, 1, 7, 57, 204, 420, 546, 462, 252, 84, 15, 1, 7, 64, 261, 624, 966, 1008, 714, 336, 99, 16, 1, 7, 71, 325, 885
Offset: 0
Triangle begins
[1];
[7, 1];
[7, 8, 1];
[7, 15, 9, 1];
...
- Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
- Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch. 5, pp. 109-122.
Row sums:
A000079(n+2), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 6 for n=2 and 0 otherwise.
-
a093564 n k = a093564_tabl !! n !! k
a093564_row n = a093564_tabl !! n
a093564_tabl = [1] : iterate
(\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [7, 1]
-- Reinhard Zumkeller, Sep 01 2014
-
N:= 20: # to get the first N rows
T:=Matrix(N,N):
T[1,1]:= 1:
for m from 2 to N do
T[m,1]:= 7:
T[m,2..m]:= T[m-1,1..m-1] + T[m-1,2..m];
od:
for m from 1 to N do
convert(T[m,1..m],list)
od; # Robert Israel, Dec 28 2014
A261720
Array of pyramidal (3-dimensional figurate numbers) read by antidiagonals.
Original entry on oeis.org
1, 1, 4, 1, 5, 10, 1, 6, 14, 20, 1, 7, 18, 30, 35, 1, 8, 22, 40, 55, 56, 1, 9, 26, 50, 75, 91, 84, 1, 10, 30, 60, 95, 126, 140, 120, 1, 11, 34, 70, 115, 161, 196, 204, 165, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286
Offset: 1
Row 2: (1, 5, 14, 30, 55, ...) = (1, 4, 10, 20, 35, ...) + (0, 1, 4, 10, 20, 35, ...).
(1, 7, 22, 50, ...) is the binomial transform of (1, 6, 9, 4, 0, 0, 0, ...) 3rd row in Pascal's triangle (1,4) followed by zeros. (1, 7, 22, 50, ...) is the third partial sum of (1, 4, 4, 4, ...).
- Albert H. Beiler, "Recreations in the Theory of Numbers"; Dover, 1966, p. 194.
Similar to
A080851 but without row n=0.
-
T[n_,k_]:=k(k+1)((k-1)n+3)/6; Flatten[Table[T[n-k+1,k],{n,11},{k,n}]] (* Stefano Spezia, Aug 15 2024 *)
A064694
Add column entries of the table with rows (1,2,0,0...), (0,3,4,5,0,0...), (0,0,6,7,8,9,0,0...), (0,0,0,10,11,12,13,14,0,0...), ...
Original entry on oeis.org
1, 5, 10, 22, 34, 58, 80, 120, 155, 215, 266, 350, 420, 532, 624, 768, 885, 1065, 1210, 1430, 1606, 1870, 2080, 2392, 2639, 3003, 3290, 3710, 4040, 4520, 4896, 5440, 5865, 6477, 6954, 7638, 8170, 8930, 9520, 10360, 11011, 11935, 12650, 13662, 14444
Offset: 1
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Oct 12 2001
a(1)=1, a(2)=2+3=5, a(3)=4+6=10, a(4)=5+7+10=22.
-
Table[ Sum[ Binomial[n-k+1, 2] + k, {k, 0, Floor[n/2]}], {n, 1, 45}] (* Jean-François Alcover, Sep 16 2013 *)
LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,5,10,22,34,58,80},50] (* Harvey P. Dale, Dec 11 2015 *)
-
{ for (n=1, 1000, a=sum(k=0, n\2, binomial(n - k + 1, 2) + k); write("b064694.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 22 2009
-
Vec(x*(2*x^2+4*x+1)/((x-1)^4*(x+1)^3) + O(x^100)) \\ Colin Barker, Feb 17 2015
A218328
Odd 9-gonal (nonagonal) pyramidal numbers.
Original entry on oeis.org
1, 155, 885, 2639, 5865, 11011, 18525, 28855, 42449, 59755, 81221, 107295, 138425, 175059, 217645, 266631, 322465, 385595, 456469, 535535, 623241, 720035, 826365, 942679, 1069425, 1207051, 1356005, 1516735, 1689689, 1875315, 2074061, 2286375, 2512705, 2753499
Offset: 1
The sequence of 9-gonal (nonagonal) pyramidal numbers A007584 begins 1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, .... As the third odd term is 885, then a(3) = 885.
-
LinearRecurrence[{4,-6,4,-1},{1,155,885,2639},33]
-
a(n)=(2*n-1)*(4*n-3)*(28*n-25)/3 \\ Charles R Greathouse IV, Oct 18 2022
Showing 1-10 of 15 results.
Comments