cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A051740 Partial sums of A007584.

Original entry on oeis.org

1, 11, 45, 125, 280, 546, 966, 1590, 2475, 3685, 5291, 7371, 10010, 13300, 17340, 22236, 28101, 35055, 43225, 52745, 63756, 76406, 90850, 107250, 125775, 146601, 169911, 195895, 224750, 256680, 291896, 330616, 373065, 419475, 470085, 525141
Offset: 0

Views

Author

Barry E. Williams, Dec 07 1999

Keywords

Comments

Convolution of A000027 with A001106 (excluding 0). - Bruno Berselli, Dec 07 2012

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Murray R.Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.

Crossrefs

Cf. A093564 ((7, 1) Pascal, column m=4).
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.

Programs

  • GAP
    List([0..40], n-> (7*n+4)*Binomial(n+3,3)/4); # G. C. Greubel, Aug 29 2019
  • Magma
    /* A000027 convolved with A001106 (excluding 0): */ A001106:=func; [&+[(n-i+1)*A001106(i): i in [1..n]]: n in [1..36]]; // Bruno Berselli, Dec 07 2012
    
  • Maple
    seq((7*n+4)*binomial(n+3,3)/4, n=0..40); # G. C. Greubel, Aug 29 2019
  • Mathematica
    Table[(7*n+4)*Binomial[n+3,3]/4, {n,0,40}] (* G. C. Greubel, Aug 29 2019 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,11,45,125,280},40] (* Harvey P. Dale, May 18 2023 *)
  • PARI
    vector(40, n, (7*n-3)*binomial(n+2,3)/4) \\ G. C. Greubel, Aug 29 2019
    
  • Sage
    [(7*n+4)*binomial(n+3,3)/4 for n in (0..40)] # G. C. Greubel, Aug 29 2019
    

Formula

a(n) = binomial(n+3, 3)*(7*n+4)/4.
a(n) = (7*n+4)*binomial(n+3, 3)/4.
G.f.: (1+6*x)/(1-x)^5.
a(n) = A080852(7,n). - R. J. Mathar, Jul 28 2016
E.g.f.: (4! + 240*x + 288*x^2 + 88*x^3 + 7*x^4)*exp(x)/4!. - G. C. Greubel, Aug 29 2019

A000326 Pentagonal numbers: a(n) = n*(3*n-1)/2.

Original entry on oeis.org

0, 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, 590, 651, 715, 782, 852, 925, 1001, 1080, 1162, 1247, 1335, 1426, 1520, 1617, 1717, 1820, 1926, 2035, 2147, 2262, 2380, 2501, 2625, 2752, 2882, 3015, 3151
Offset: 0

Views

Author

Keywords

Comments

The average of the first n (n > 0) pentagonal numbers is the n-th triangular number. - Mario Catalani (mario.catalani(AT)unito.it), Apr 10 2003
a(n) is the sum of n integers starting from n, i.e., 1, 2 + 3, 3 + 4 + 5, 4 + 5 + 6 + 7, etc. - Jon Perry, Jan 15 2004
Partial sums of 1, 4, 7, 10, 13, 16, ... (1 mod 3), a(2k) = k(6k-1), a(2k-1) = (2k-1)(3k-2). - Jon Perry, Sep 10 2004
Starting with offset 1 = binomial transform of [1, 4, 3, 0, 0, 0, ...]. Also, A004736 * [1, 3, 3, 3, ...]. - Gary W. Adamson, Oct 25 2007
If Y is a 3-subset of an n-set X then, for n >= 4, a(n-3) is the number of 4-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
Solutions to the duplication formula 2*a(n) = a(k) are given by the index pairs (n, k) = (5,7), (5577, 7887), (6435661, 9101399), etc. The indices are integer solutions to the pair of equations 2(6n-1)^2 = 1 + y^2, k = (1+y)/6, so these n can be generated from the subset of numbers [1+A001653(i)]/6, any i, where these are integers, confined to the cases where the associated k=[1+A002315(i)]/6 are also integers. - R. J. Mathar, Feb 01 2008
a(n) is a binomial coefficient C(n,4) (A000332) if and only if n is a generalized pentagonal number (A001318). Also see A145920. - Matthew Vandermast, Oct 28 2008
Even octagonal numbers divided by 8. - Omar E. Pol, Aug 18 2011
Sequence found by reading the line from 0, in the direction 0, 5, ... and the line from 1, in the direction 1, 12, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011
The hyper-Wiener index of the star-tree with n edges (see A196060, example). - Emeric Deutsch, Sep 30 2011
More generally the n-th k-gonal number is equal to n + (k-2)*A000217(n-1), n >= 1, k >= 3. In this case k = 5. - Omar E. Pol, Apr 06 2013
Note that both Euler's pentagonal theorem for the partition numbers and Euler's pentagonal theorem for the sum of divisors refer more exactly to the generalized pentagonal numbers, not this sequence. For more information see A001318, A175003, A238442. - Omar E. Pol, Mar 01 2014
The Fuss-Catalan numbers are Cat(d,k)= [1/(k*(d-1)+1)]*binomial(k*d,k) and enumerate the number of (d+1)-gon partitions of a (k*(d-1)+2)-gon (cf. Schuetz and Whieldon link). a(n)= Cat(n,3), so enumerates the number of (n+1)-gon partitions of a (3*(n-1)+2)-gon. Analogous sequences are A100157 (k=4) and A234043 (k=5). - Tom Copeland, Oct 05 2014
Binomial transform of (0, 1, 3, 0, 0, 0, ...) (A169585 with offset 1) and second partial sum of (0, 1, 3, 3, 3, ...). - Gary W. Adamson, Oct 05 2015
For n > 0, a(n) is the number of compositions of n+8 into n parts avoiding parts 2 and 3. - Milan Janjic, Jan 07 2016
a(n) is also the number of edges in the Mycielskian of the complete graph K[n]. Indeed, K[n] has n vertices and n(n-1)/2 edges. Then its Mycielskian has n + 3n(n-1)/2 = n(3n-1)/2. See p. 205 of the West reference. - Emeric Deutsch, Nov 04 2016
Sum of the numbers from n to 2n-1. - Wesley Ivan Hurt, Dec 03 2016
Also the number of maximal cliques in the n-Andrásfai graph. - Eric W. Weisstein, Dec 01 2017
Coefficients in the hypergeometric series identity 1 - 5*(x - 1)/(2*x + 1) + 12*(x - 1)*(x - 2)/((2*x + 1)*(2*x + 2)) - 22*(x - 1)*(x - 2)*(x - 3)/((2*x + 1)*(2*x + 2)*(2*x + 3)) + ... = 0, valid for Re(x) > 1. Cf. A002412 and A002418. Column 2 of A103450. - Peter Bala, Mar 14 2019
A generalization of the Comment dated Apr 10 2003 follows. (k-3)*A000292(n-2) plus the average of the first n (2k-1)-gonal numbers is the n-th k-gonal number. - Charlie Marion, Nov 01 2020
a(n+1) is the number of Dyck paths of size (3,3n+1); i.e., the number of NE lattice paths from (0,0) to (3,3n+1) which stay above the line connecting these points. - Harry Richman, Jul 13 2021
a(n) is the largest sum of n positive integers x_1, ..., x_n such that x_i | x_(i+1)+1 for each 1 <= i <= n, where x_(n+1) = x_1. - Yifan Xie, Feb 21 2025

Examples

			Illustration of initial terms:
.
.                                       o
.                                     o o
.                          o        o o o
.                        o o      o o o o
.                o     o o o    o o o o o
.              o o   o o o o    o o o o o
.        o   o o o   o o o o    o o o o o
.      o o   o o o   o o o o    o o o o o
.  o   o o   o o o   o o o o    o o o o o
.
.  1    5     12       22           35
- _Philippe Deléham_, Mar 30 2013
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pages 2 and 311.
  • Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; p. 129.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 38, 40.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 1.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 291.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 284.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 64.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 52-53, 129-130, 132.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 7-10.
  • André Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 186.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 98-100.
  • Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Cf. A001318 (generalized pentagonal numbers), A049452, A033570, A010815, A034856, A051340, A004736, A033568, A049453, A002411 (partial sums), A033579.
See A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.
Cf. A240137: sum of n consecutive cubes starting from n^3.
Cf. similar sequences listed in A022288.
Partial sums of A016777.

Programs

  • GAP
    List([0..50],n->n*(3*n-1)/2); # Muniru A Asiru, Mar 18 2019
    
  • Haskell
    a000326 n = n * (3 * n - 1) `div` 2  -- Reinhard Zumkeller, Jul 07 2012
    
  • Magma
    [n*(3*n-1)/2 : n in [0..100]]; // Wesley Ivan Hurt, Oct 15 2015
    
  • Maple
    A000326 := n->n*(3*n-1)/2: seq(A000326(n), n=0..100);
    A000326:=-(1+2*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]-a[n-2]+3 od: seq(a[n], n=0..50); # Miklos Kristof, Zerinvary Lajos, Feb 18 2008
  • Mathematica
    Table[n (3 n - 1)/2, {n, 0, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
    Array[# (3 # - 1)/2 &, 47, 0] (* Zerinvary Lajos, Jul 10 2009 *)
    LinearRecurrence[{3, -3, 1}, {0, 1, 5}, 61] (* Harvey P. Dale, Dec 27 2011 *)
    pentQ[n_] := IntegerQ[(1 + Sqrt[24 n + 1])/6]; pentQ[0] = True; Select[Range[0, 3200], pentQ@# &] (* Robert G. Wilson v, Mar 31 2014 *)
    Join[{0}, Accumulate[Range[1, 312, 3]]] (* Harvey P. Dale, Mar 26 2016 *)
    (* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[5], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    CoefficientList[Series[x (-1 - 2 x)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
    PolygonalNumber[5, Range[0, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
  • PARI
    a(n)=n*(3*n-1)/2
    
  • PARI
    vector(100, n, n--; binomial(3*n, 2)/3) \\ Altug Alkan, Oct 06 2015
    
  • PARI
    is_a000326(n) = my(s); n==0 || (issquare (24*n+1, &s) && s%6==5); \\ Hugo Pfoertner, Aug 03 2023
    
  • Python
    # Intended to compute the initial segment of the sequence, not isolated terms.
    def aList():
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 3, y + 3
    A000326 = aList()
    print([next(A000326) for i in range(47)]) # Peter Luschny, Aug 04 2019

Formula

Product_{m > 0} (1 - q^m) = Sum_{k} (-1)^k*x^a(k). - Paul Barry, Jul 20 2003
G.f.: x*(1+2*x)/(1-x)^3.
E.g.f.: exp(x)*(x+3*x^2/2).
a(n) = n*(3*n-1)/2.
a(-n) = A005449(n).
a(n) = binomial(3*n, 2)/3. - Paul Barry, Jul 20 2003
a(n) = A000290(n) + A000217(n-1). - Lekraj Beedassy, Jun 07 2004
a(0) = 0, a(1) = 1; for n >= 2, a(n) = 2*a(n-1) - a(n-2) + 3. - Miklos Kristof, Mar 09 2005
a(n) = Sum_{k=1..n} (2*n - k). - Paul Barry, Aug 19 2005
a(n) = 3*A000217(n) - 2*n. - Lekraj Beedassy, Sep 26 2006
a(n) = A126890(n, n-1) for n > 0. - Reinhard Zumkeller, Dec 30 2006
a(n) = A049452(n) - A022266(n) = A033991(n) - A005476(n). - Zerinvary Lajos, Jun 12 2007
Equals A034856(n) + (n - 1)^2. Also equals A051340 * [1,2,3,...]. - Gary W. Adamson, Jul 27 2007
a(n) = binomial(n+1, 2) + 2*binomial(n, 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 0, a(1) = 1, a(2) = 5. - Jaume Oliver Lafont, Dec 02 2008
a(n) = a(n-1) + 3*n-2 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 20 2010
a(n) = A000217(n) + 2*A000217(n-1). - Vincenzo Librandi, Nov 20 2010
a(n) = A014642(n)/8. - Omar E. Pol, Aug 18 2011
a(n) = A142150(n) + A191967(n). - Reinhard Zumkeller, Jul 07 2012
a(n) = (A000290(n) + A000384(n))/2 = (A000217(n) + A000566(n))/2 = A049450(n)/2. - Omar E. Pol, Jan 11 2013
a(n) = n*A000217(n) - (n-1)*A000217(n-1). - Bruno Berselli, Jan 18 2013
a(n) = A005449(n) - n. - Philippe Deléham, Mar 30 2013
From Oskar Wieland, Apr 10 2013: (Start)
a(n) = a(n+1) - A016777(n),
a(n) = a(n+2) - A016969(n),
a(n) = a(n+3) - A016777(n)*3 = a(n+3) - A017197(n),
a(n) = a(n+4) - A016969(n)*2 = a(n+4) - A017641(n),
a(n) = a(n+5) - A016777(n)*5,
a(n) = a(n+6) - A016969(n)*3,
a(n) = a(n+7) - A016777(n)*7,
a(n) = a(n+8) - A016969(n)*4,
a(n) = a(n+9) - A016777(n)*9. (End)
a(n) = A000217(2n-1) - A000217(n-1), for n > 0. - Ivan N. Ianakiev, Apr 17 2013
a(n) = A002411(n) - A002411(n-1). - J. M. Bergot, Jun 12 2013
Sum_{n>=1} a(n)/n! = 2.5*exp(1). - Richard R. Forberg, Jul 15 2013
a(n) = floor(n/(exp(2/(3*n)) - 1)), for n > 0. - Richard R. Forberg, Jul 27 2013
From Vladimir Shevelev, Jan 24 2014: (Start)
a(3*a(n) + 4*n + 1) = a(3*a(n) + 4*n) + a(3*n+1).
A generalization. Let {G_k(n)}_(n >= 0) be sequence of k-gonal numbers (k >= 3). Then the following identity holds: G_k((k-2)*G_k(n) + c(k-3)*n + 1) = G_k((k-2)*G_k(n) + c(k-3)*n) + G_k((k-2)*n + 1), where c = A000124. (End)
A242357(a(n)) = 1 for n > 0. - Reinhard Zumkeller, May 11 2014
Sum_{n>=1} 1/a(n)= (1/3)*(9*log(3) - sqrt(3)*Pi). - Enrique Pérez Herrero, Dec 02 2014. See the decimal expansion A244641.
a(n) = (A000292(6*n+k-1)-A000292(k))/(6*n-1)-A000217(3*n+k), for any k >= 0. - Manfred Arens, Apr 26 2015 [minor edits from Wolfdieter Lang, May 10 2015]
a(n) = A258708(3*n-1,1) for n > 0. - Reinhard Zumkeller, Jun 23 2015
a(n) = A007584(n) - A245301(n-1), for n > 0. - Manfred Arens, Jan 31 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(sqrt(3)*Pi - 6*log(2))/3 = 0.85501000622865446... - Ilya Gutkovskiy, Jul 28 2016
a(m+n) = a(m) + a(n) + 3*m*n. - Etienne Dupuis, Feb 16 2017
In general, let P(k,n) be the n-th k-gonal number. Then P(k,m+n) = P(k,m) + (k-2)mn + P(k,n). - Charlie Marion, Apr 16 2017
a(n) = A023855(2*n-1) - A023855(2*n-2). - Luc Rousseau, Feb 24 2018
a(n) = binomial(n,2) + n^2. - Pedro Caceres, Jul 28 2019
Product_{n>=2} (1 - 1/a(n)) = 3/5. - Amiram Eldar, Jan 21 2021
(n+1)*(a(n^2) + a(n^2+1) + ... + a(n^2+n)) = n*(a(n^2+n+1) + ... + a(n^2+2n)). - Charlie Marion, Apr 28 2024
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * binomial(k, 2)*binomial(3*n+k-1, 2*k). - Peter Bala, Nov 04 2024

Extensions

Incorrect example removed by Joerg Arndt, Mar 11 2010

A001106 9-gonal (or enneagonal or nonagonal) numbers: a(n) = n*(7*n-5)/2.

Original entry on oeis.org

0, 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 396, 474, 559, 651, 750, 856, 969, 1089, 1216, 1350, 1491, 1639, 1794, 1956, 2125, 2301, 2484, 2674, 2871, 3075, 3286, 3504, 3729, 3961, 4200, 4446, 4699, 4959, 5226, 5500, 5781, 6069, 6364
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 9, ... and the parallel line from 1, in the direction 1, 24, ..., in the square spiral whose vertices are the generalized 9-gonal (enneagonal) numbers A118277. Also sequence found by reading the same lines in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 10 2011
Number of ordered pairs of integers (x,y) with abs(x) < n, abs(y) < n and x+y <= n. - Reinhard Zumkeller, Jan 23 2012
Partial sums give A007584. - Omar E. Pol, Jan 15 2013

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093564 ((7, 1) Pascal, column m=2). Partial sums of A016993.

Programs

  • Haskell
    a001106 n = length [(x,y) | x <- [-n+1..n-1], y <- [-n+1..n-1], x + y <= n]
    -- Reinhard Zumkeller, Jan 23 2012
    
  • Haskell
    a001106 n = n*(7*n-5) `div` 2 -- James Spahlinger, Oct 18 2012
    
  • Mathematica
    Table[n(7n - 5)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 1, 9}, 50] (* Harvey P. Dale, Nov 06 2011 *)
    (* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[9], n], {n, 0, 43}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    PolygonalNumber[9,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 19 2019 *)
  • PARI
    a(n)=n*(7*n-5)/2 \\ Charles R Greathouse IV, Jun 10 2011
    
  • Python
    def aList(): # Intended to compute the initial segment of the sequence, not isolated terms.
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 7, y + 7
    A001106 = aList()
    print([next(A001106) for i in range(49)]) # Peter Luschny, Aug 04 2019

Formula

a(n) = (7*n - 5)*n/2.
G.f.: x*(1+6*x)/(1-x)^3. - Simon Plouffe in his 1992 dissertation.
a(n) = n + 7*A000217(n-1). - Floor van Lamoen, Oct 14 2005
Starting (1, 9, 24, 46, 75, ...) gives the binomial transform of (1, 8, 7, 0, 0, 0, ...). - Gary W. Adamson, Jul 22 2007
Row sums of triangle A131875 starting (1, 9, 24, 46, 75, 111, ...). A001106 = binomial transform of (1, 8, 7, 0, 0, 0, ...). - Gary W. Adamson, Jul 22 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 0, a(1) = 1, a(2) = 9. - Jaume Oliver Lafont, Dec 02 2008
a(n) = 2*a(n-1) - a(n-2) + 7. - Mohamed Bouhamida, May 05 2010
a(n) = a(n-1) + 7*n - 6 (with a(0) = 0). - Vincenzo Librandi, Nov 12 2010
a(n) = A174738(7n). - Philippe Deléham, Mar 26 2013
a(7*a(n) + 22*n + 1) = a(7*a(n) + 22*n) + a(7*n+1). - Vladimir Shevelev, Jan 24 2014
E.g.f.: x*(2 + 7*x)*exp(x)/2. - Ilya Gutkovskiy, Jul 28 2016
a(n+2) + A000217(n) = (2*n+3)^2. - Ezhilarasu Velayutham, Mar 18 2020
Product_{n>=2} (1 - 1/a(n)) = 7/9. - Amiram Eldar, Jan 21 2021
Sum_{n>=1} 1/a(n) = A244646. - Amiram Eldar, Nov 12 2021
a(n) = A000217(3*n-2) - (n-1)^2. - Charlie Marion, Feb 27 2022
a(n) = 3*A000217(n) + 2*A005563(n-2). In general, if P(k,n) = the n-th k-gonal number, then P(m*k,n) = m*P(k,n) + (m-1)*A005563(n-2). - Charlie Marion, Feb 21 2023

A080851 Square array of pyramidal numbers, read by antidiagonals.

Original entry on oeis.org

1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 14, 20, 15, 1, 7, 18, 30, 35, 21, 1, 8, 22, 40, 55, 56, 28, 1, 9, 26, 50, 75, 91, 84, 36, 1, 10, 30, 60, 95, 126, 140, 120, 45, 1, 11, 34, 70, 115, 161, 196, 204, 165, 55, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 66, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286, 78
Offset: 0

Views

Author

Paul Barry, Feb 21 2003

Keywords

Comments

The first row contains the triangular numbers, which are really two-dimensional, but can be regarded as degenerate pyramidal numbers. - N. J. A. Sloane, Aug 28 2015

Examples

			Array begins (n>=0, k>=0):
1,  3,  6, 10,  15,  21,  28,  36,  45,   55, ... A000217
1,  4, 10, 20,  35,  56,  84, 120, 165,  220, ... A000292
1,  5, 14, 30,  55,  91, 140, 204, 285,  385, ... A000330
1,  6, 18, 40,  75, 126, 196, 288, 405,  550, ... A002411
1,  7, 22, 50,  95, 161, 252, 372, 525,  715, ... A002412
1,  8, 26, 60, 115, 196, 308, 456, 645,  880, ... A002413
1,  9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
		

Crossrefs

Numerous sequences in the database are to be found in the array. Rows include the pyramidal numbers A000217, A000292, A000330, A002411, A002412, A002413, A002414, A007584, A007585, A007586.
Columns include or are closely related to A017029, A017113, A017017, A017101, A016777, A017305. Diagonals include A006325, A006484, A002417.
Cf. A057145, A027660 (antidiagonal sums).
See A257199 for another version of this array.

Programs

  • Derive
    vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^4,x,11),x,n),n,0,11),k,-1,10) VECTOR(VECTOR(comb(k+2,2)+comb(k+2,3)n, k, 0, 11), n, 0, 11)
  • Maple
    A080851 := proc(n,k)
        binomial(k+3,3)+(n-1)*binomial(k+2,3) ;
    end proc:
    seq( seq(A080851(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
  • Mathematica
    pyramidalFigurative[ ngon_, rank_] := (3 rank^2 + rank^3 (ngon - 2) - rank (ngon - 5))/6; Table[ pyramidalFigurative[n-k-1, k], {n, 4, 15}, {k, n-3}] // Flatten (* Robert G. Wilson v, Sep 15 2015 *)

Formula

T(n, k) = binomial(k+3, 3) + (n-1)*binomial(k+2, 3), corrected Oct 01 2021.
T(n, k) = T(n-1, k) + C(k+2, 3) = T(n-1, k) + k*(k+1)*(k+2)/6.
G.f. for rows: (1 + n*x)/(1-x)^4, n>=-1.
T(n,k) = sum_{j=1..k+1} A057145(n+2,j). - R. J. Mathar, Jul 28 2016

A237616 a(n) = n*(n + 1)*(5*n - 4)/2.

Original entry on oeis.org

0, 1, 18, 66, 160, 315, 546, 868, 1296, 1845, 2530, 3366, 4368, 5551, 6930, 8520, 10336, 12393, 14706, 17290, 20160, 23331, 26818, 30636, 34800, 39325, 44226, 49518, 55216, 61335, 67890, 74896, 82368, 90321, 98770, 107730, 117216, 127243, 137826, 148980, 160720
Offset: 0

Views

Author

Bruno Berselli, Feb 10 2014

Keywords

Comments

Also 17-gonal (or heptadecagonal) pyramidal numbers.
This sequence is related to A226489 by 2*a(n) = n*A226489(n) - Sum_{i=0..n-1} A226489(i).

Examples

			After 0, the sequence is provided by the row sums of the triangle:
   1;
   2,  16;
   3,  32,  31;
   4,  48,  62,  46;
   5,  64,  93,  92,  61;
   6,  80, 124, 138, 122,  76;
   7,  96, 155, 184, 183, 152,  91;
   8, 112, 186, 230, 244, 228, 182, 106;
   9, 128, 217, 276, 305, 304, 273, 212, 121;
  10, 144, 248, 322, 366, 380, 364, 318, 242, 136; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 15*r-14 and T(r,c) = T(r-1,c)+T(r,r) = (r-c+1)*T(r,r), with r>=c>0.
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (fifteenth row of the table).

Crossrefs

Cf. sequences with formula n*(n+1)*(k*n-k+3)/6: A000217 (k=0), A000292 (k=1), A000330 (k=2), A002411 (k=3), A002412 (k=4), A002413 (k=5), A002414 (k=6), A007584 (k=7), A007585 (k=8), A007586 (k=9), A007587 (k=10), A050441 (k=11), A172073 (k=12), A177890 (k=13), A172076 (k=14), this sequence (k=15), A172078(k=16), A237617 (k=17), A172082 (k=18), A237618 (k=19), A172117(k=20), A256718 (k=21), A256716 (k=22), A256645 (k=23), A256646(k=24), A256647 (k=25), A256648 (k=26), A256649 (k=27), A256650(k=28).

Programs

  • GAP
    List([0..40], n-> n*(n+1)*(5*n-4)/2); # G. C. Greubel, Aug 30 2019
  • Magma
    [n*(n+1)*(5*n-4)/2: n in [0..40]];
    
  • Magma
    I:=[0,1,18,66]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
    
  • Maple
    seq(n*(n+1)*(5*n-4)/2, n=0..40); # G. C. Greubel, Aug 30 2019
  • Mathematica
    Table[n(n+1)(5n-4)/2, {n, 0, 40}]
    CoefficientList[Series[x (1+14x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,18,66},50] (* Harvey P. Dale, Jan 11 2015 *)
  • PARI
    a(n)=n*(n+1)*(5*n-4)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [n*(n+1)*(5*n-4)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
    

Formula

G.f.: x*(1 + 14*x)/(1 - x)^4.
For n>0, a(n) = Sum_{i=0..n-1} (n-i)*(15*i+1). More generally, the sequence with the closed form n*(n+1)*(k*n-k+3)/6 is also given by Sum_{i=0..n-1} (n-i)*(k*i+1) for n>0.
a(n) = A104728(A001844(n-1)) for n>0.
Sum_{n>=1} 1/a(n) = (2*sqrt(5*(5 + 2*sqrt(5)))*Pi + 10*sqrt(5)*arccoth(sqrt(5)) + 25*log(5) - 16)/72 = 1.086617842136293176... . - Vaclav Kotesovec, Dec 07 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n >= 4. - Wesley Ivan Hurt, Dec 18 2020
E.g.f.: exp(x)*x*(2 + 16*x + 5*x^2)/2. - Elmo R. Oliveira, Aug 04 2025

A007585 10-gonal (or decagonal) pyramidal numbers: a(n) = n*(n + 1)*(8*n - 5)/6.

Original entry on oeis.org

0, 1, 11, 38, 90, 175, 301, 476, 708, 1005, 1375, 1826, 2366, 3003, 3745, 4600, 5576, 6681, 7923, 9310, 10850, 12551, 14421, 16468, 18700, 21125, 23751, 26586, 29638, 32915, 36425, 40176, 44176, 48433, 52955, 57750
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of [1, 10, 17, 8, 0, 0, 0, ...] = (1, 11, 38, 90, ...). - Gary W. Adamson, Mar 18 2009
This sequence is related to A000384 by a(n) = n*A000384(n) - Sum_{i=0..n-1} A000384(i) and this is the case d=4 in the identity n*(n*(d*n-d+2)/2) - Sum_{k=0..n-1} k*(d*k-d+2)/2 = n*(n+1)*(2*d*n - 2*d + 3)/6. - Bruno Berselli, Apr 21 2010
For n>0, (a(n)) is the principal diagonal of the convolution array A213750. - Clark Kimberling, Jun 20 2012
From Ant King, Oct 30 2012: (Start)
The partial sums of the figurate decagonal numbers A001107.
For n>1, the digital roots of this sequence A010888(A007585(n)) form the purely periodic 27-cycle {1,2,2,9,4,4,8,6,6,7,8,8,6,1,1,5,3,3,4,5,5,3,7,7,2,9,9}.
For n>1, the units’ digits of this sequence A010879(A007585(n)) form the purely periodic 20-cycle {1,1,8,0,5,1,6,8,5,5,6,6,3,5,0,6,1,3,0,0}.
(End)

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000384.
Cf. A093565 ((8, 1) Pascal, column m=3). Partial sums of A001107.
Cf. similar sequences listed in A237616.

Programs

Formula

a(n) = (8*n-5)*binomial(n+1, 2)/3.
G.f.: x*(1+7*x)/(1-x)^4.
a(n) = (8*n^3 + 3*n^2 - 5*n)/6. - Vincenzo Librandi, Aug 01 2010
a(0)=0, a(1)=1, a(2)=11, a(3)=38, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Dec 20 2011
From Ant King, Oct 30 2012: (Start)
a(n) = a(n-1) + n*(4*n-3).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 8.
a(n) = (n+1)*(2*A001107(n) + n)/6.
a(n) = A000292(n) + 7*A000292(n-1).
a(n) = A007584(n) + A000292(n-1).
a(n) = A000217(n) + 8*A000292(n-1).
a(n) = binomial(n+2,3) + 7*binomial(n+1,3).
Sum_{n>=1} 1/a(n) = 6*(4*pi*(sqrt(2)-1) + 4*(8-sqrt(2))*log(2) + 8*sqrt(2)*log(2-sqrt(2))-5)/65 = 1.145932345...
(End)
a(n) = Sum_{i=0..n-1} (n-i)*(8*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: x*(6 + 27*x + 8*x^2)*exp(x)/6. - Ilya Gutkovskiy, May 12 2017

A093564 (7,1) Pascal triangle.

Original entry on oeis.org

1, 7, 1, 7, 8, 1, 7, 15, 9, 1, 7, 22, 24, 10, 1, 7, 29, 46, 34, 11, 1, 7, 36, 75, 80, 45, 12, 1, 7, 43, 111, 155, 125, 57, 13, 1, 7, 50, 154, 266, 280, 182, 70, 14, 1, 7, 57, 204, 420, 546, 462, 252, 84, 15, 1, 7, 64, 261, 624, 966, 1008, 714, 336, 99, 16, 1, 7, 71, 325, 885
Offset: 0

Views

Author

Wolfdieter Lang, Apr 22 2004

Keywords

Comments

The array F(7;n,m) gives in the columns m>=1 the figurate numbers based on A016993, including the 9-gonal numbers A001106, (see the W. Lang link).
This is the seventh member, d=7, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653, A093560-3, for d=1..6.
This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x):=Sum_{m=0..n} a(n,m)*x^m is G(z,x)=(1+6*z)/(1-(1+x)*z).
The SW-NE diagonals give A022097(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with n=0 value 6. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.

Examples

			Triangle begins
  [1];
  [7,  1];
  [7,  8,  1];
  [7, 15,  9,  1];
  ...
		

References

  • Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
  • Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch. 5, pp. 109-122.

Crossrefs

Row sums: A000079(n+2), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 6 for n=2 and 0 otherwise.
The column sequences give for m=1..9: A016993, A001106 (9-gonal), A007584, A051740, A051877, A050403, A027818, A034266, A055994.
Cf. A093565 (d=8).

Programs

  • Haskell
    a093564 n k = a093564_tabl !! n !! k
    a093564_row n = a093564_tabl !! n
    a093564_tabl = [1] : iterate
                   (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [7, 1]
    -- Reinhard Zumkeller, Sep 01 2014
  • Maple
    N:= 20: # to get the first N rows
    T:=Matrix(N,N):
    T[1,1]:= 1:
    for m from 2 to N do
    T[m,1]:= 7:
    T[m,2..m]:= T[m-1,1..m-1] + T[m-1,2..m];
    od:
    for m from 1 to N do
    convert(T[m,1..m],list)
    od; # Robert Israel, Dec 28 2014

Formula

a(n, m)=F(7;n-m, m) for 0<= m <= n, otherwise 0, with F(7;0, 0)=1, F(7;n, 0)=7 if n>=1 and F(7;n, m):=(7*n+m)*binomial(n+m-1, m-1)/m if m>=1.
Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=7 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1).
G.f. column m (without leading zeros): (1+6*x)/(1-x)^(m+1), m>=0.
T(n, k) = C(n, k) + 6*C(n-1, k). - Philippe Deléham, Aug 28 2005
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(7 + 15*x + 9*x^2/2! + x^3/3!) = 7 + 22*x + 46*x^2/2! + 80*x^3/3! + 125*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014

A261720 Array of pyramidal (3-dimensional figurate numbers) read by antidiagonals.

Original entry on oeis.org

1, 1, 4, 1, 5, 10, 1, 6, 14, 20, 1, 7, 18, 30, 35, 1, 8, 22, 40, 55, 56, 1, 9, 26, 50, 75, 91, 84, 1, 10, 30, 60, 95, 126, 140, 120, 1, 11, 34, 70, 115, 161, 196, 204, 165, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286
Offset: 1

Views

Author

Gary W. Adamson, Aug 29 2015

Keywords

Comments

First few sequences in the array:
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... A000292
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, ... A000330
1, 6, 18, 40, 75, 126, 196, 288, 405, 550, ... A002411
1, 7, 22, 50, 95, 161, 252, 372, 525, 715, ... A002412
1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ... A002413
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
...
The corresponding bases to rows are: Triangle, Square, Pentagon, Hexagon, Heptagon, Octagon, ...

Examples

			Row 2: (1, 5, 14, 30, 55, ...) = (1, 4, 10, 20, 35, ...) + (0, 1, 4, 10, 20, 35, ...).
(1, 7, 22, 50, ...) is the binomial transform of (1, 6, 9, 4, 0, 0, 0, ...) 3rd row in Pascal's triangle (1,4) followed by zeros. (1, 7, 22, 50, ...) is the third partial sum of (1, 4, 4, 4, ...).
		

References

  • Albert H. Beiler, "Recreations in the Theory of Numbers"; Dover, 1966, p. 194.

Crossrefs

Similar to A080851 but without row n=0.

Programs

  • Mathematica
    T[n_,k_]:=k(k+1)((k-1)n+3)/6; Flatten[Table[T[n-k+1,k],{n,11},{k,n}]] (* Stefano Spezia, Aug 15 2024 *)

Formula

T(n,k) = A080851(n,k).
Given: first sequence in the array is A000292: (1, 4, 10, 20, 35, ...) Subsequent rows are generated by adding (0, 1, 4, 10, 20, 35, ...) to the current row.
n-th row is the binomial transform of row 3 in Pascal's triangle (1,n) followed by zeros. Alternatively, begin with (1, 4, 10, 20, ...) being the binomial transform of (1, 3, 3, 1, 0, 0, 0, ...). Add (0, 1, 2, 1, 0, 0, 0, ...) to the latter to obtain the inverse binomial transform of the next row: (1, 5, 14, 30, 55,..); then repeat the operation.
The row starting (1, N, ...) is the 3rd partial sum of (1, (N-3), (N-3), (N-3), ...).
From Stefano Spezia, Aug 15 2024: (Start)
T(n,k) = k*(k + 1)*((k - 1)*n + 3)/6.
G.f. as array: x*y*(1 + x*(y - 1))/((1 - x)^2*(1 - y)^4).
E.g.f. as array: exp(y)*y*(exp(x)*(6 + 3*(1 + x)*y + x*y^2) - 3*(2 + y))/6. (End)

A064694 Add column entries of the table with rows (1,2,0,0...), (0,3,4,5,0,0...), (0,0,6,7,8,9,0,0...), (0,0,0,10,11,12,13,14,0,0...), ...

Original entry on oeis.org

1, 5, 10, 22, 34, 58, 80, 120, 155, 215, 266, 350, 420, 532, 624, 768, 885, 1065, 1210, 1430, 1606, 1870, 2080, 2392, 2639, 3003, 3290, 3710, 4040, 4520, 4896, 5440, 5865, 6477, 6954, 7638, 8170, 8930, 9520, 10360, 11011, 11935, 12650, 13662, 14444
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Oct 12 2001

Keywords

Examples

			a(1)=1, a(2)=2+3=5, a(3)=4+6=10, a(4)=5+7+10=22.
		

Crossrefs

Cf. A007584.

Programs

  • Mathematica
    Table[ Sum[ Binomial[n-k+1, 2] + k, {k, 0, Floor[n/2]}], {n, 1, 45}] (* Jean-François Alcover, Sep 16 2013 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,5,10,22,34,58,80},50] (* Harvey P. Dale, Dec 11 2015 *)
  • PARI
    { for (n=1, 1000, a=sum(k=0, n\2, binomial(n - k + 1, 2) + k); write("b064694.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 22 2009
    
  • PARI
    Vec(x*(2*x^2+4*x+1)/((x-1)^4*(x+1)^3) + O(x^100)) \\ Colin Barker, Feb 17 2015

Formula

a(2n-1) = n*(n+1)*(7*n-4)/6 (see A007584), a(2n) = n*(n+1)*(7*n+8)/6.
a(n) = sum{k=0..floor((n+1)/2), (n-k+1)ceiling((n-k+1)/2)+k+if(mod(n-k+1, 2) =0, ceiling((n-k+1)/2), 0)}. - Paul Barry, Aug 25 2004
a(n) = sum{k=0..floor(n/2), C(n-k+1,2)+k}; - Paul Barry, Jul 23 2008
a(n) = (2*n+1-(-1)^n)*(2*n+5-(-1)^n)*(14*n+15+17*(-1)^n)/384. - Luce ETIENNE, Feb 17 2015
From Colin Barker, Feb 17 2015: (Start)
a(n) = (7*n^3+30*n^2+32*n)/48 for n even.
a(n) = (7*n^3+27*n^2+17*n-3)/48 for n odd.
G.f.: x*(2*x^2+4*x+1) / ((x-1)^4*(x+1)^3).
(End)

A218328 Odd 9-gonal (nonagonal) pyramidal numbers.

Original entry on oeis.org

1, 155, 885, 2639, 5865, 11011, 18525, 28855, 42449, 59755, 81221, 107295, 138425, 175059, 217645, 266631, 322465, 385595, 456469, 535535, 623241, 720035, 826365, 942679, 1069425, 1207051, 1356005, 1516735, 1689689, 1875315, 2074061, 2286375, 2512705, 2753499
Offset: 1

Views

Author

Ant King, Oct 28 2012

Keywords

Examples

			The sequence of 9-gonal (nonagonal) pyramidal numbers A007584 begins 1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, .... As the third odd term is 885, then a(3) = 885.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,155,885,2639},33]
  • PARI
    a(n)=(2*n-1)*(4*n-3)*(28*n-25)/3 \\ Charles R Greathouse IV, Oct 18 2022

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 448.
a(n) = (2*n-1)*(4*n-3)*(28*n-25)/3.
G.f.: x*(1+151*x+271*x^2+25*x^3)/(1-x)^4.
E.g.f.: 25 + exp(x)*(224*x^3 + 192*x^2 + 78*x - 75)/3. - Elmo R. Oliveira, Aug 24 2025
Showing 1-10 of 15 results. Next