cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A238760 Sum of column entries of the table with rows of prime numbers (2,3,0,0,...), (0,5,7,11,0,...), (0,0,13,17,19,23,0,...), (0,0,0,29,31,37,41,43,0,...), ...

Original entry on oeis.org

2, 8, 20, 57, 97, 186, 286, 447, 623, 914, 1190, 1633, 2021, 2642, 3196, 3997, 4745, 5830, 6792, 8149, 9345, 11040, 12502, 14559, 16323, 18766, 20894, 23837, 26313, 29712, 32608, 36539, 39885, 44364, 48118, 53227, 57557, 63322, 68136, 74585, 80017, 87168
Offset: 1

Views

Author

Michel Lagneau, Mar 05 2014

Keywords

Examples

			2   3
0   5   7   11
0   0  13   17   19   23
0   0   0   29   31   37   41   43
0   0   0    0   47   53   59   61   67   71
0   0   0    0    0   73   79   83   89   97   101   103
........................................................
sum of the first column = 2.
sum of the second column = 3 + 5 = 8.
sum of the third column = 7 + 13 = 20.
sum of the fourth column = 11 + 17 + 29 = 57.
sum of the fifth column = 19 + 31 + 47 = 97.
.............................................
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=50:mm:=500:T:=array(1..nn,1..mm):for i from 1 to nn do:for j from 1 to mm do:T[i,j]:=0:od:od:m:=0:for n from 1 to nn do: for k from n to 2*n do: m:=m+1:T[n,k]:=ithprime(m):od:od:for p from 1 to nn do : s:=sum('T[q,p]', 'q'=1..nn): printf(`%d, `,s):od:
  • Mathematica
    With[{nn=50},PadRight[#,nn]&/@(Join[Table[0,Length[#]-2],#]&/@ TakeList[ Prime[Range[((nn-1)(2+nn))/2]],Range[2,nn]])]//Total (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Feb 16 2018 *)
  • Sage
    def a(n):
        return sum([nth_prime((k+1)*(k+2)/2+n-k) for k in range(floor(n/2),n+1)])
    # Ralf Stephan, Mar 09 2014

Formula

a(n) = sum(k=floor(n/2)...n+1, A000040(n+(k+1)*(k+2)/2-k) ). - Ralf Stephan, Mar 09 2014
Showing 1-1 of 1 results.