Original entry on oeis.org
1, 12, 50, 140, 315, 616, 1092, 1800, 2805, 4180, 6006, 8372, 11375, 15120, 19720, 25296, 31977, 39900, 49210, 60060, 72611, 87032, 103500, 122200, 143325, 167076, 193662, 223300, 256215, 292640, 332816, 376992, 425425, 478380, 536130
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
- Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.
Cf.
A093565 ((8, 1) Pascal, column m=4).
Cf.
A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.
-
List([0..40], n-> (2*n+1)*Binomial(n+3,3)); # G. C. Greubel, Aug 30 2019
-
/* A000027 convolved with A001107 (excluding 0): */
A001107:=func; [&+[(n-i+1)*A001107(i): i in [1..n]]: n in [1..35]]; // Bruno Berselli, Dec 07 2012
-
[(2*n+1)*Binomial(n+3,3): n in [0..40]]; // G. C. Greubel, Aug 30 2019
-
seq((2*n+1)*binomial(n+3,3), n=0..40); # G. C. Greubel, Aug 30 2019
-
Table[(2*n+1)*Binomial[n+3,3], {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011, modified by G. C. Greubel, Aug 30 2019 *)
-
vector(40, n, (2*n-1)*binomial(n+2,3)) \\ G. C. Greubel, Aug 30 2019
-
[(2*n+1)*binomial(n+3,3) for n in (0..40)] # G. C. Greubel, Aug 30 2019
A001107
10-gonal (or decagonal) numbers: a(n) = n*(4*n-3).
Original entry on oeis.org
0, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 540, 637, 742, 855, 976, 1105, 1242, 1387, 1540, 1701, 1870, 2047, 2232, 2425, 2626, 2835, 3052, 3277, 3510, 3751, 4000, 4257, 4522, 4795, 5076, 5365, 5662, 5967, 6280, 6601, 6930, 7267, 7612, 7965, 8326
Offset: 0
On a square lattice, place the nonnegative integers at lattice points forming a spiral as follows: place "0" at the origin; then move one step downward (i.e., in the negative y direction) and place "1" at the lattice point reached; then turn 90 degrees in either direction and place a "2" at the next lattice point; then make another 90-degree turn in the same direction and place a "3" at the lattice point; etc. The terms of the sequence will lie along the negative y-axis, as seen in the example below:
99 64--65--66--67--68--69--70--71--72
| | |
98 63 36--37--38--39--40--41--42 73
| | | | |
97 62 35 16--17--18--19--20 43 74
| | | | | | |
96 61 34 15 4---5---6 21 44 75
| | | | | | | | |
95 60 33 14 3 *0* 7 22 45 76
| | | | | | | | | |
94 59 32 13 2--*1* 8 23 46 77
| | | | | | | |
93 58 31 12--11-*10*--9 24 47 78
| | | | | |
92 57 30--29--28-*27*-26--25 48 79
| | | |
91 56--55--54--53-*52*-51--50--49 80
| |
90--89--88--87--86-*85*-84--83--82--81
[Edited by _Jon E. Schoenfield_, Jan 02 2017]
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
- Bruce C. Berndt, Ramanujan's Notebooks, Part II, Springer; see p. 23.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
- S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Soren Laing Aletheia-Zomlefer, Lenny Fukshansky, and Stephan Ramon Garcia, The Bateman-Horn Conjecture: Heuristics, History, and Applications, arXiv:1807.08899 [math.NT], 2018-2019. See 6.6.3 p. 33.
- Emilio Apricena, A version of the Ulam spiral.
- Yin Choi Cheng, Greedy Sidon sets for linear forms, J. Num. Theor. (2024).
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 344.
- Craig Knecht, Corona of the H0 hexagon with a T(n) triangle.
- Minh Nguyen, 2-adic Valuations of Square Spiral Sequences, Honors Thesis, Univ. of Southern Mississippi (2021).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Leo Tavares, Illustration: Conjoined Hexagon/Square Pairs
- Eric Weisstein's World of Mathematics, Barbell Graph.
- Eric Weisstein's World of Mathematics, Decagonal Number.
- Eric Weisstein's World of Mathematics, Graph Path.
- Eric Weisstein's World of Mathematics, Sunlet Graph.
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Sequences from spirals:
A001107 (this),
A002939,
A007742,
A033951,
A033952,
A033953,
A033954,
A033989,
A033990,
A033991,
A002943,
A033996,
A033988.
-
[4*n^2-3*n : n in [0..50] ]; // Wesley Ivan Hurt, Jun 05 2014
-
A001107:=-(1+7*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
-
LinearRecurrence[{3, -3, 1}, {0, 1, 10}, 60] (* Harvey P. Dale, May 08 2012 *)
Table[PolygonalNumber[RegularPolygon[10], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
Table[4 n^2 - 3 n, {n, 0, 49}] (* Alonso del Arte, Jan 24 2017 *)
PolygonalNumber[10, Range[0, 20]] (* Eric W. Weisstein, Sep 07 2017 *)
LinearRecurrence[{3, -3, 1}, {1, 10, 27}, {0, 20}] (* Eric W. Weisstein, Sep 07 2017 *)
-
a(n)=4*n^2-3*n
-
a=lambda n: 4*n**2-3*n # Indranil Ghosh, Jan 01 2017
def aList(): # Intended to compute the initial segment of the sequence, not isolated terms.
x, y = 1, 1
yield 0
while True:
yield x
x, y = x + y + 8, y + 8
A001107 = aList()
print([next(A001107) for i in range(49)]) # Peter Luschny, Aug 04 2019
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A080851
Square array of pyramidal numbers, read by antidiagonals.
Original entry on oeis.org
1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 14, 20, 15, 1, 7, 18, 30, 35, 21, 1, 8, 22, 40, 55, 56, 28, 1, 9, 26, 50, 75, 91, 84, 36, 1, 10, 30, 60, 95, 126, 140, 120, 45, 1, 11, 34, 70, 115, 161, 196, 204, 165, 55, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 66, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286, 78
Offset: 0
Array begins (n>=0, k>=0):
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... A000217
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... A000292
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, ... A000330
1, 6, 18, 40, 75, 126, 196, 288, 405, 550, ... A002411
1, 7, 22, 50, 95, 161, 252, 372, 525, 715, ... A002412
1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ... A002413
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
See
A257199 for another version of this array.
-
vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^4,x,11),x,n),n,0,11),k,-1,10) VECTOR(VECTOR(comb(k+2,2)+comb(k+2,3)n, k, 0, 11), n, 0, 11)
-
A080851 := proc(n,k)
binomial(k+3,3)+(n-1)*binomial(k+2,3) ;
end proc:
seq( seq(A080851(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
-
pyramidalFigurative[ ngon_, rank_] := (3 rank^2 + rank^3 (ngon - 2) - rank (ngon - 5))/6; Table[ pyramidalFigurative[n-k-1, k], {n, 4, 15}, {k, n-3}] // Flatten (* Robert G. Wilson v, Sep 15 2015 *)
A237616
a(n) = n*(n + 1)*(5*n - 4)/2.
Original entry on oeis.org
0, 1, 18, 66, 160, 315, 546, 868, 1296, 1845, 2530, 3366, 4368, 5551, 6930, 8520, 10336, 12393, 14706, 17290, 20160, 23331, 26818, 30636, 34800, 39325, 44226, 49518, 55216, 61335, 67890, 74896, 82368, 90321, 98770, 107730, 117216, 127243, 137826, 148980, 160720
Offset: 0
After 0, the sequence is provided by the row sums of the triangle:
1;
2, 16;
3, 32, 31;
4, 48, 62, 46;
5, 64, 93, 92, 61;
6, 80, 124, 138, 122, 76;
7, 96, 155, 184, 183, 152, 91;
8, 112, 186, 230, 244, 228, 182, 106;
9, 128, 217, 276, 305, 304, 273, 212, 121;
10, 144, 248, 322, 366, 380, 364, 318, 242, 136; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 15*r-14 and T(r,c) = T(r-1,c)+T(r,r) = (r-c+1)*T(r,r), with r>=c>0.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (fifteenth row of the table).
Cf. sequences with formula n*(n+1)*(k*n-k+3)/6:
A000217 (k=0),
A000292 (k=1),
A000330 (k=2),
A002411 (k=3),
A002412 (k=4),
A002413 (k=5),
A002414 (k=6),
A007584 (k=7),
A007585 (k=8),
A007586 (k=9),
A007587 (k=10),
A050441 (k=11),
A172073 (k=12),
A177890 (k=13),
A172076 (k=14), this sequence (k=15),
A172078(k=16),
A237617 (k=17),
A172082 (k=18),
A237618 (k=19),
A172117(k=20),
A256718 (k=21),
A256716 (k=22),
A256645 (k=23),
A256646(k=24),
A256647 (k=25),
A256648 (k=26),
A256649 (k=27),
A256650(k=28).
-
List([0..40], n-> n*(n+1)*(5*n-4)/2); # G. C. Greubel, Aug 30 2019
-
[n*(n+1)*(5*n-4)/2: n in [0..40]];
-
I:=[0,1,18,66]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
-
seq(n*(n+1)*(5*n-4)/2, n=0..40); # G. C. Greubel, Aug 30 2019
-
Table[n(n+1)(5n-4)/2, {n, 0, 40}]
CoefficientList[Series[x (1+14x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
LinearRecurrence[{4,-6,4,-1},{0,1,18,66},50] (* Harvey P. Dale, Jan 11 2015 *)
-
a(n)=n*(n+1)*(5*n-4)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(n+1)*(5*n-4)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
A093565
(8,1) Pascal triangle.
Original entry on oeis.org
1, 8, 1, 8, 9, 1, 8, 17, 10, 1, 8, 25, 27, 11, 1, 8, 33, 52, 38, 12, 1, 8, 41, 85, 90, 50, 13, 1, 8, 49, 126, 175, 140, 63, 14, 1, 8, 57, 175, 301, 315, 203, 77, 15, 1, 8, 65, 232, 476, 616, 518, 280, 92, 16, 1, 8, 73, 297, 708, 1092, 1134, 798, 372, 108, 17, 1, 8, 81, 370, 1005
Offset: 0
Triangle begins
[1];
[8, 1];
[8, 9, 1];
[8, 17, 10, 1];
...
- Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
- Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.
Row sums:
A005010(n-1), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 7 for n=2 and 0 else.
A076454
Sum of numbers that can be written as t*n + u*(n+1) for nonnegative integers t,u in exactly one way.
Original entry on oeis.org
1, 21, 102, 310, 735, 1491, 2716, 4572, 7245, 10945, 15906, 22386, 30667, 41055, 53880, 69496, 88281, 110637, 136990, 167790, 203511, 244651, 291732, 345300, 405925, 474201, 550746, 636202, 731235, 836535, 952816, 1080816, 1221297, 1375045, 1542870, 1725606, 1924111
Offset: 1
- Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.
-
[n*(n+1)*(2*n^2-1)/2: n in [1..50]]; // Vincenzo Librandi, Dec 30 2013
-
seq(1/2*n*(n+1)*(2*n^2-1),n=1..40);
-
CoefficientList[Series[(1 + 16 x + 7 x^2)/(1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 30 2013 *)
LinearRecurrence[{5,-10,10,-5,1},{1,21,102,310,735},40] (* Harvey P. Dale, Jun 30 2023 *)
A132124
a(n) = n*(n+1)*(8*n + 1)/6.
Original entry on oeis.org
0, 3, 17, 50, 110, 205, 343, 532, 780, 1095, 1485, 1958, 2522, 3185, 3955, 4840, 5848, 6987, 8265, 9690, 11270, 13013, 14927, 17020, 19300, 21775, 24453, 27342, 30450, 33785, 37355, 41168, 45232, 49555, 54145, 59010, 64158, 69597, 75335, 81380, 87740, 94423
Offset: 0
-
seq((1/6)*n*(n+1)*(8*n+1),n=0..40); # Emeric Deutsch, Aug 30 2007
-
a[n_] := n*(n + 1)*(8*n + 1)/6; Array[a, 42, 0] (* Amiram Eldar, May 20 2023 *)
A213750
Rectangular array: (row n) = b**c, where b(h) = h, c(h) = 2*(n-1+h)-1, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 5, 3, 14, 11, 5, 30, 26, 17, 7, 55, 50, 38, 23, 9, 91, 85, 70, 50, 29, 11, 140, 133, 115, 90, 62, 35, 13, 204, 196, 175, 145, 110, 74, 41, 15, 285, 276, 252, 217, 175, 130, 86, 47, 17, 385, 375, 348, 308, 259, 205, 150, 98, 53, 19, 506, 495, 465, 420
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1....5....14...30....55....91
3....11...26...50....85....133
5....17...38...70....115...175
7....23...50...90....145...217
9....29...62...110...175...259
11...35...74...130...205...301
-
b[n_] := n; c[n_] := 2 n - 1;
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213750 *)
d = Table[t[n, n], {n, 1, 40}] (* A007585 *)
s1 = Table[s[n], {n, 1, 50}] (* A002417 *)
FindLinearRecurrence[s1]
FindGeneratingFunction[s1, x]
Showing 1-10 of 15 results.
Comments