A076459
Sum of numbers that can be written as t*n + u*(n+1) for nonnegative integers t,u in exactly n ways.
Original entry on oeis.org
1, 57, 390, 1510, 4335, 10311, 21532, 40860, 72045, 119845, 190146, 290082, 428155, 614355, 860280, 1179256, 1586457, 2099025, 2736190, 3519390, 4472391, 5621407, 6995220, 8625300, 10545925, 12794301, 15410682, 18438490, 21924435, 25918635, 30474736, 35650032
Offset: 1
- Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.
-
[n*(n+1)*(2*n^3+2*n^2-2*n-1)/2: n in [1..50]]; // Vincenzo Librandi, Dec 30 2013
-
seq(1/2*n*(n+1)*(2*n^3+2*n^2-2*n-1),n=1..35);
-
CoefficientList[Series[(1 + 51 x + 63 x^2 + 5 x^3)/(1 - x)^6, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 30 2013 *)
A233329
Expansion of (1+4*x+x^2)/((1+x)^2*(1-x)^5).
Original entry on oeis.org
1, 7, 21, 51, 102, 186, 310, 490, 735, 1065, 1491, 2037, 2716, 3556, 4572, 5796, 7245, 8955, 10945, 13255, 15906, 18942, 22386, 26286, 30667, 35581, 41055, 47145, 53880, 61320, 69496, 78472, 88281, 98991, 110637, 123291, 136990, 151810, 167790, 185010, 203511
Offset: 0
-
[(2*n^4+20*n^3+68*n^2+90*n+37-2*n*(-1)^n-5*(-1)^n)/32 : n in [0..50]]; // Wesley Ivan Hurt, Nov 17 2014
-
A233329:=n->(2*n^4+20*n^3+68*n^2+90*n+37-2*n*(-1)^n-5*(-1)^n)/32: seq(A233329(n), n=0..50); # Wesley Ivan Hurt, Nov 17 2014
-
CoefficientList[Series[(1 + 4*x + x^2)/((1 + x)^2*(1 - x)^5), {x, 0, 50}], x] (* Wesley Ivan Hurt, Nov 17 2014 *)
LinearRecurrence[{3,-1,-5,5,1,-3,1},{1,7,21,51,102,186,310},50] (* Harvey P. Dale, Jul 05 2019 *)
-
a(n) = (2*n^4+20*n^3+68*n^2+(90-2*(-1)^n)*n)\/32+1 \\ Charles R Greathouse IV, Oct 28 2014
A076455
Sum of numbers that can be written as t*n + u*(n+1) for nonnegative integers t,u in exactly two ways.
Original entry on oeis.org
5, 57, 246, 710, 1635, 3255, 5852, 9756, 15345, 23045, 33330, 46722, 63791, 85155, 111480, 143480, 181917, 227601, 281390, 344190, 416955, 500687, 596436, 705300, 828425, 967005, 1122282, 1295546, 1488135, 1701435, 1936880, 2195952, 2480181
Offset: 1
- Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.
-
[n*(n+1)*(4*n^2+2*n-1)/2: n in [1..50]]; // Vincenzo Librandi, Dec 30 2013
-
seq(1/2*n*(n+1)*(4*n^2+2*n-1),n=1..40);
-
CoefficientList[Series[(5 + 32 x + 11 x^2)/(1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 30 2013 *)
A233331
Irregular array read by rows: T(n,k) = number of r_{n,k}-cores associated with A233332(n,k), reduced for symmetry, for n>=2, 1<=k<=floor(n/2), explained below.
Original entry on oeis.org
1, 7, 21, 15, 51, 66, 102, 136, 75, 186, 244, 274, 310, 406, 462, 246, 490, 631, 729, 780, 735, 939, 1086, 1183, 610, 1065, 1341, 1557, 1707, 1783, 1491, 1861, 2155, 2380, 2511, 1286, 2037, 2512, 2908, 3217, 3427, 3534, 2716, 3322, 3831, 4250, 4548, 4738, 2404
Offset: 2
Array begins: {1}; {7}; {21, 15}; {51, 66}; {102, 136, 75}; ...
- Marjorie Senechal, Quasicrystals and Geometry, Cambridge University Press, 1995, p. 145.
A076458
Sum of numbers that can be written as t*n + u*(n+1) for nonnegative integers t,u in exactly five ways.
Original entry on oeis.org
17, 165, 678, 1910, 4335, 8547, 15260, 25308, 39645, 59345, 85602, 119730, 163163, 217455, 284280, 365432, 462825, 578493, 714590, 873390, 1057287, 1268795, 1510548, 1785300, 2095925, 2445417, 2836890, 3273578, 3758835, 4296135, 4889072, 5541360
Offset: 1
- Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.
-
[n*(n+1)*(10*n^2+8*n-1)/2: n in [1..50]]; // Vincenzo Librandi, Dec 30 2013
-
seq(1/2*n*(n+1)*(10*n^2+8*n-1),n=1..40);
-
CoefficientList[Series[(17 + 80 x + 23 x^2)/(1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 30 2013 *)
A076456
Sum of numbers that can be written as t*n + u*(n+1) for nonnegative integers t,u in exactly three ways.
Original entry on oeis.org
9, 93, 390, 1110, 2535, 5019, 8988, 14940, 23445, 35145, 50754, 71058, 96915, 129255, 169080, 217464, 275553, 344565, 425790, 520590, 630399, 756723, 901140, 1065300, 1250925, 1459809, 1693818, 1954890, 2245035, 2566335, 2920944, 3311088, 3739065, 4207245
Offset: 1
- Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.
-
[n*(n+1)*(6*n^2+4*n-1)/2: n in [1..50]]; // Vincenzo Librandi, Dec 30 2013
-
seq(1/2*n*(n+1)*(6*n^2+4*n-1),n=1..40);
-
CoefficientList[Series[3 (3 + 16 x + 5 x^2)/(1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 30 2013 *)
A076457
Sum of numbers that can be written as t*n + u*(n+1) for nonnegative integers t,u in exactly four ways.
Original entry on oeis.org
13, 129, 534, 1510, 3435, 6783, 12124, 20124, 31545, 47245, 68178, 95394, 130039, 173355, 226680, 291448, 369189, 461529, 570190, 696990, 843843, 1012759, 1205844, 1425300, 1673425, 1952613, 2265354, 2614234, 3001935, 3431235, 3905008, 4426224, 4997949, 5623345
Offset: 1
- Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.
-
[n*(n+1)*(8*n^2+6*n-1)/2: n in [1..50]]; // Vincenzo Librandi, Dec 30 2013
-
seq(1/2*n*(n+1)*(8*n^2+6*n-1),n=1..40);
-
CoefficientList[Series[(13 + 64 x + 19 x^2)/(1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 30 2013 *)
A144066
T(n, k) is the number of order-preserving partial transformations (of an n-element chain) of height k (height(alpha) = |Im(alpha)|); triangle T read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 21, 15, 1, 1, 60, 102, 28, 1, 1, 155, 490, 310, 45, 1, 1, 378, 1935, 2220, 735, 66, 1, 1, 889, 6741, 12285, 7315, 1491, 91, 1
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
1, 1;
1, 6, 1;
1, 21, 15, 1;
1, 60, 102, 28, 1;
1, 155, 490, 310, 45, 1;
1, 378, 1935, 2220, 735, 66, 1;
1, 889, 6741, 12285, 7315, 1491, 91, 1;
...
T(2,1) = 6 because there are exactly 6 order-preserving partial transformations (on a 2-element chain) of height 1, namely: (1)->(1), (1)->(2), (2)->(1), (2)->(2), (1,2)->(1,1), and (1,2)->(2,2) -- the mappings are coordinate-wise.
Showing 1-8 of 8 results.
Comments