cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A076454 Sum of numbers that can be written as t*n + u*(n+1) for nonnegative integers t,u in exactly one way.

Original entry on oeis.org

1, 21, 102, 310, 735, 1491, 2716, 4572, 7245, 10945, 15906, 22386, 30667, 41055, 53880, 69496, 88281, 110637, 136990, 167790, 203511, 244651, 291732, 345300, 405925, 474201, 550746, 636202, 731235, 836535, 952816, 1080816, 1221297, 1375045, 1542870, 1725606, 1924111
Offset: 1

Views

Author

Floor van Lamoen, Oct 13 2002

Keywords

Comments

This sequence is related to A007585 by a(n) = n*A007585(n) - Sum_{i=0..n-1} A007585(i). - Vincenzo Librandi, Aug 08 2010
In fact, this is the case d=4 in the identity n*(n*(n+1)*(2*d*n-2*d+3)/6) - Sum_{k=0..n-1} k*(k+1)*(2*d*k-2*d+3)/6 = n*(n+1)*(3*d*n^2-d*n+4*n-2*d+2)/12. - Bruno Berselli, Mar 01 2012
Bisection of A233329 (up to an offset). - L. Edson Jeffery, Jan 23 2014

References

  • Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.

Crossrefs

Programs

  • Magma
    [n*(n+1)*(2*n^2-1)/2: n in [1..50]]; // Vincenzo Librandi, Dec 30 2013
  • Maple
    seq(1/2*n*(n+1)*(2*n^2-1),n=1..40);
  • Mathematica
    CoefficientList[Series[(1 + 16 x + 7 x^2)/(1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 30 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,21,102,310,735},40] (* Harvey P. Dale, Jun 30 2023 *)

Formula

a(n) = n*(n+1)*(2*n^2-1)/2.
G.f.: x*(1+16*x+7*x^2)/(1-x)^5.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5), n>=6, with a(1)=1, a(2)=21, a(3)=102, a(4)=310, a(5)=735. - L. Edson Jeffery, Dec 30 2013

Extensions

Comments rewritten from Bruno Berselli, Mar 01 2012
More terms from Vincenzo Librandi, Dec 30 2013

A304659 a(n) = n*(n + 1)*(16*n - 1)/6.

Original entry on oeis.org

0, 5, 31, 94, 210, 395, 665, 1036, 1524, 2145, 2915, 3850, 4966, 6279, 7805, 9560, 11560, 13821, 16359, 19190, 22330, 25795, 29601, 33764, 38300, 43225, 48555, 54306, 60494, 67135, 74245, 81840, 89936, 98549, 107695, 117390, 127650, 138491, 149929, 161980, 174660, 187985
Offset: 0

Views

Author

Bruno Berselli, May 22 2018

Keywords

Crossrefs

Cf. A007742, A076455, A139273 (first differences).
First lower diagonal of the rectangular array in A213835.

Programs

  • Magma
    [n*(n+1)*(16*n-1)/6: n in [0..41]]; // Vincenzo Librandi, May 23 2018
    
  • Mathematica
    Table[n (n + 1) (16 n - 1)/6, {n, 0, 50}]
  • PARI
    concat(0, Vec(x*(5 + 11*x) / (1 - x)^4 + O(x^40))) \\ Colin Barker, May 25 2018

Formula

O.g.f.: x*(5 + 11*x)/(1 - x)^4.
E.g.f.: x*(30 + 63*x + 16*x^2)*exp(x)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) + a(-n) = A033429(n).
a(n) = n*A007742(n) - Sum_{k = 0..n-1} A007742(k) for n > 0.
Also, this sequence is related to A076455 by the same type of recurrence:
A076455(n) = n*a(n) - Sum_{k = 0..n-1} a(k) for n > 0.
Showing 1-2 of 2 results.