A076454 Sum of numbers that can be written as t*n + u*(n+1) for nonnegative integers t,u in exactly one way.
1, 21, 102, 310, 735, 1491, 2716, 4572, 7245, 10945, 15906, 22386, 30667, 41055, 53880, 69496, 88281, 110637, 136990, 167790, 203511, 244651, 291732, 345300, 405925, 474201, 550746, 636202, 731235, 836535, 952816, 1080816, 1221297, 1375045, 1542870, 1725606, 1924111
Offset: 1
References
- Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[n*(n+1)*(2*n^2-1)/2: n in [1..50]]; // Vincenzo Librandi, Dec 30 2013
-
Maple
seq(1/2*n*(n+1)*(2*n^2-1),n=1..40);
-
Mathematica
CoefficientList[Series[(1 + 16 x + 7 x^2)/(1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 30 2013 *) LinearRecurrence[{5,-10,10,-5,1},{1,21,102,310,735},40] (* Harvey P. Dale, Jun 30 2023 *)
Formula
a(n) = n*(n+1)*(2*n^2-1)/2.
G.f.: x*(1+16*x+7*x^2)/(1-x)^5.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5), n>=6, with a(1)=1, a(2)=21, a(3)=102, a(4)=310, a(5)=735. - L. Edson Jeffery, Dec 30 2013
Extensions
Comments rewritten from Bruno Berselli, Mar 01 2012
More terms from Vincenzo Librandi, Dec 30 2013
Comments