A002417 4-dimensional figurate numbers: a(n) = n*binomial(n+2, 3).
1, 8, 30, 80, 175, 336, 588, 960, 1485, 2200, 3146, 4368, 5915, 7840, 10200, 13056, 16473, 20520, 25270, 30800, 37191, 44528, 52900, 62400, 73125, 85176, 98658, 113680, 130355, 148800, 169136, 191488, 215985, 242760, 271950, 303696, 338143, 375440, 415740
Offset: 1
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
- K. -W. Lau, Solution to Problem 2495, Journal of Recreational Mathematics 2002-3 31(1) 79-80.
- Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Teofil Bogdan and Mircea Dan Rus, Counting the lattice rectangles inside Aztec diamonds and square biscuits, arXiv:2007.13472 [math.CO], 2020.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Johnson Graph
- Eric Weisstein's World of Mathematics, Triangular Graph
- A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
GAP
List([1..40], n-> n^2*(n+1)*(n+2)/6 ); # G. C. Greubel, Jul 03 2019
-
Magma
/* A000027 convolved with A000384 (excluding 0): */ A000384:=func
; [&+[(n-i+1)*A000384(i): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Dec 06 2012 -
Magma
[n*Binomial(n+2,3):n in [1..40]]; // Vincenzo Librandi, Aug 02 2015
-
Maple
seq(n^2*(n+1)*(n+2)/6, n=1..50);
-
Mathematica
Table[n Binomial[n+2, 3], {n, 40}] Table[-Coefficient[CharacteristicPolynomial[Array[KroneckerDelta[#1, #2] + 1 &, {n+2, n+2}], x], x^3], {n, 40}] (* John M. Campbell, May 28 2011 *) Nest[Accumulate, Range[1, 170, 4], 3] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 8, 30, 80, 175}, 40] (* Harvey P. Dale, Jan 11 2014 *) Table[n Pochhammer[n, 3]/6, {n, 40}] (* or *) CoefficientList[Series[ (1+3x)/(1-x)^5, {x,0,40}], x] (* Eric W. Weisstein, Aug 14 2017 *)
-
PARI
a(n)=n^2*(n+1)*(n+2)/6 \\ Charles R Greathouse IV, Jun 10 2011
-
Sage
[n*binomial(n+2,3) for n in (1..40)] # G. C. Greubel, Jul 03 2019
Formula
a(n) = n^2*(n+1)*(n+2)/6.
G.f.: x*(1+3*x)/(1-x)^5. - Simon Plouffe in his 1992 dissertation
a(n) = C(n+2, 2)*n^2/3. - Paul Barry, Jun 26 2003
a(n) = C(n+3, n)*C(n+1, 1). - Zerinvary Lajos, Apr 27 2005
a(n) = (binomial(n+3,n-1) - binomial(n+2,n-2))*(binomial(n+1,n-1) - binomial(n,n-2)). - Zerinvary Lajos, May 12 2006
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5), n>5. - Wesley Ivan Hurt, Aug 01 2015
G.f.: x*hypergeometric2F1(2,4;1;x). - R. J. Mathar, Aug 09 2015
a(n) = A080852(4,n-1). - R. J. Mathar, Jul 28 2016
Sum_{n>=1} 1/a(n) = Pi^2/2 - 15/4. - Jaume Oliver Lafont, Jul 13 2017
E.g.f.: x*(6 + 18*x + 9*x^2 + x^3)*exp(x)/3!. - G. C. Greubel, Jul 03 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi^2 + 27 - 48*log(2))/4. - Amiram Eldar, Jun 28 2020
Extensions
Edited and extended by Floor van Lamoen, Oct 09 2002
Comments