Original entry on oeis.org
1, 13, 63, 203, 518, 1134, 2226, 4026, 6831, 11011, 17017, 25389, 36764, 51884, 71604, 96900, 128877, 168777, 217987, 278047, 350658, 437690, 541190, 663390, 806715, 973791, 1167453, 1390753, 1646968, 1939608, 2272424, 2649416, 3074841, 3553221, 4089351, 4688307, 5355454, 6096454
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-16.
Cf.
A093565 ((8, 1) Pascal, column m=5).
-
List([0..40], n-> (8*n+5)*Binomial(n+4,4)/5); # G. C. Greubel, Aug 30 2019
-
[(8*n+5)*Binomial(n+4,4)/5: n in [0..40]]; // G. C. Greubel, Aug 30 2019
-
seq((8*n+5)*binomial(n+4,4)/5, n=0..40); # G. C. Greubel, Aug 30 2019
-
Table[(8*n+5)*Binomial[n+4,4]/5, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011, modified by G. C. Greubel, Aug 30 2019 *)
-
vector(40, n, (8*n-3)*binomial(n+3,4)/5) \\ G. C. Greubel, Aug 30 2019
-
[(8*n+5)*binomial(n+4,4)/5 for n in (0..30)] # G. C. Greubel, Aug 30 2019
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A080852
Square array of 4D pyramidal numbers, read by antidiagonals.
Original entry on oeis.org
1, 1, 4, 1, 5, 10, 1, 6, 15, 20, 1, 7, 20, 35, 35, 1, 8, 25, 50, 70, 56, 1, 9, 30, 65, 105, 126, 84, 1, 10, 35, 80, 140, 196, 210, 120, 1, 11, 40, 95, 175, 266, 336, 330, 165, 1, 12, 45, 110, 210, 336, 462, 540, 495, 220, 1, 13, 50, 125, 245, 406, 588, 750, 825, 715, 286
Offset: 0
Array, n >= 0, k >= 0, begins
1 4 10 20 35 56 ...
1 5 15 35 70 126 ...
1 6 20 50 105 196 ...
1 7 25 65 140 266 ...
1 8 30 80 175 336 ...
See
A257200 for another version of the array.
-
vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^5,x,11),x,n),n,0,11),k,-1,10)
-
VECTOR(VECTOR(comb(k+3,3)+comb(k+3,4)n, k, 0, 11), n, 0, 11)
-
A080852 := proc(n,k)
binomial(k+4,4)+(n-1)*binomial(k+3,4) ;
end proc:
seq( seq(A080852(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
-
T[n_, k_] := Binomial[k+3, 3] + Binomial[k+3, 4]n;
Table[T[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 05 2023 *)
A093565
(8,1) Pascal triangle.
Original entry on oeis.org
1, 8, 1, 8, 9, 1, 8, 17, 10, 1, 8, 25, 27, 11, 1, 8, 33, 52, 38, 12, 1, 8, 41, 85, 90, 50, 13, 1, 8, 49, 126, 175, 140, 63, 14, 1, 8, 57, 175, 301, 315, 203, 77, 15, 1, 8, 65, 232, 476, 616, 518, 280, 92, 16, 1, 8, 73, 297, 708, 1092, 1134, 798, 372, 108, 17, 1, 8, 81, 370, 1005
Offset: 0
Triangle begins
[1];
[8, 1];
[8, 9, 1];
[8, 17, 10, 1];
...
- Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
- Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.
Row sums:
A005010(n-1), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 7 for n=2 and 0 else.
A220212
Convolution of natural numbers (A000027) with tetradecagonal numbers (A051866).
Original entry on oeis.org
0, 1, 16, 70, 200, 455, 896, 1596, 2640, 4125, 6160, 8866, 12376, 16835, 22400, 29240, 37536, 47481, 59280, 73150, 89320, 108031, 129536, 154100, 182000, 213525, 248976, 288666, 332920, 382075, 436480, 496496, 562496, 634865, 714000, 800310, 894216, 996151
Offset: 0
Cf. convolution of the natural numbers (
A000027) with the k-gonal numbers (* means "except 0"):
Cf. similar sequences with formula n*(n+1)*(n+2)*(k*n-k+2)/12 listed in
A264850.
-
A051866:=func; [&+[(n-k+1)*A051866(k): k in [0..n]]: n in [0..37]];
-
I:=[0,1,16,70,200]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
-
A051866[k_] := k (6 k - 5); Table[Sum[(n - k + 1) A051866[k], {k, 0, n}], {n, 0, 37}]
CoefficientList[Series[x (1 + 11 x) / (1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
A213835
Rectangular array: (row n) = b**c, where b(h) = h, c(h) = 4*n-7+4*h, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 7, 5, 22, 19, 9, 50, 46, 31, 13, 95, 90, 70, 43, 17, 161, 155, 130, 94, 55, 21, 252, 245, 215, 170, 118, 67, 25, 372, 364, 329, 275, 210, 142, 79, 29, 525, 516, 476, 413, 335, 250, 166, 91, 33, 715, 705, 660, 588, 497, 395
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1....7....22....50....95
5....19...46....90....155
9....31...70....130...215
13...43...94....170...275
17...55...118...210...335
21...67...142...250...395
Cf.
A304659 (first lower diagonal).
-
b[n_]:=n;c[n_]:=4n-3;
t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}]
TableForm[Table[t[n,k],{n,1,10},{k,1,10}]]
Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]]
r[n_]:=Table[t[n,k],{k,1,60}] (* A213835 *)
Table[t[n,n],{n,1,40}] (* A172078 *)
s[n_]:=Sum[t[i,n+1-i],{i,1,n}]
Table[s[n],{n,1,50}] (* A051797 *)
A264850
a(n) = n*(n + 1)*(n + 2)*(7*n - 5)/12.
Original entry on oeis.org
0, 1, 18, 80, 230, 525, 1036, 1848, 3060, 4785, 7150, 10296, 14378, 19565, 26040, 34000, 43656, 55233, 68970, 85120, 103950, 125741, 150788, 179400, 211900, 248625, 289926, 336168, 387730, 445005, 508400, 578336, 655248, 739585, 831810, 932400, 1041846
Offset: 0
-
[n*(n+1)*(n+2)*(7*n-5)/12: n in [0..50]]; // Vincenzo Librandi, Nov 27 2015
-
Table[n (n + 1) (n + 2) (7 n - 5)/12, {n, 0, 50}]
LinearRecurrence[{5,-10,10,-5,1},{0,1,18,80,230},40] (* Harvey P. Dale, Sep 27 2018 *)
-
a(n)=n*(n+1)*(n+2)*(7*n-5)/12 \\ Charles R Greathouse IV, Jul 26 2016
Showing 1-7 of 7 results.
Comments