A193726 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(x+2)^n and q(n,x)=(x+2)^n.
1, 1, 2, 2, 9, 10, 4, 28, 65, 50, 8, 76, 270, 425, 250, 16, 192, 920, 2200, 2625, 1250, 32, 464, 2800, 9000, 16250, 15625, 6250, 64, 1088, 7920, 32000, 77500, 112500, 90625, 31250, 128, 2496, 21280, 103600, 315000, 612500, 743750, 515625, 156250
Offset: 0
Examples
First six rows: 1; 1, 2; 2, 9, 10; 4, 28, 65, 50; 8, 76, 270, 425, 250; 16, 192, 920, 2200, 2625, 1250;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
function T(n, k) // T = A193726 if k lt 0 or k gt n then return 0; elif n lt 2 then return k+1; else return 2*T(n-1, k) + 5*T(n-1, k-1); end if; end function; [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 02 2023
-
Mathematica
(* First program *) z = 8; a = 1; b = 2; c = 1; d = 2; p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193726 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193727 *) (* Second program *) T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, k+1, 2*T[n-1, k] + 5*T[n -1, k-1]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 02 2023 *)
-
SageMath
def T(n, k): # T = A193726 if (k<0 or k>n): return 0 elif (n<2): return k+1 else: return 2*T(n-1, k) + 5*T(n-1, k-1) flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 02 2023
Formula
T(n,k) = 5*T(n-1,k-1) + 2*T(n-1,k) with T(0,0)=T(1,0)=1 and T(1,1)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1-x-3*x*y)/(1-2*x-5*x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 02 2023: (Start)
T(n, 0) = A011782(n).
T(n, n) = A020699(n).
T(n, n-1) = A081040(n-1).
Sum_{k=0..n} T(n, k) = A169634(n-1) + (4/7)*[n=0].
Comments