A193727 Mirror of the triangle A193726.
1, 2, 1, 10, 9, 2, 50, 65, 28, 4, 250, 425, 270, 76, 8, 1250, 2625, 2200, 920, 192, 16, 6250, 15625, 16250, 9000, 2800, 464, 32, 31250, 90625, 112500, 77500, 32000, 7920, 1088, 64, 156250, 515625, 743750, 612500, 315000, 103600, 21280, 2496, 128
Offset: 0
Examples
First six rows: 1; 2, 1; 10, 9, 2; 50, 65, 28, 4; 250, 425, 270, 76, 8; 1250, 2625, 2200, 920, 192; 16;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
function T(n, k) // T = A193727 if k lt 0 or k gt n then return 0; elif n lt 2 then return n-k+1; else return 5*T(n-1, k) + 2*T(n-1, k-1); end if; end function; [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 02 2023
-
Mathematica
(* First program *) z = 8; a = 1; b = 2; c = 1; d = 2; p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193726 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193727 *) (* Second program *) T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, n-k+1, 5*T[n-1, k] + 2*T[n-1, k-1]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 02 2023 *)
-
SageMath
def T(n, k): # T = A193727 if (k<0 or k>n): return 0 elif (n<2): return n-k+1 else: return 5*T(n-1, k) + 2*T(n-1, k-1) flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 02 2023
Formula
T(n,k) = A193726(n,n-k).
T(n,k) = 2*T(n-1,k-1) + 5*T(n-1,k) with T(0,0)=T(1,1)=1 and T(1,0)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1-3*x-x*y)/(1-5*x-2*x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 02 2023: (Start)
T(n, 0) = A020699(n).
T(n, 1) = A081040(n-1).
T(n, n) = A011782(n).
Sum_{k=0..n} T(n, k) = A169634(n-1) + (4/7)*[n=0].
Sum_{k=0..n} (-1)^k * T(n, k) = A133494(n).
Comments