cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193727 Mirror of the triangle A193726.

Original entry on oeis.org

1, 2, 1, 10, 9, 2, 50, 65, 28, 4, 250, 425, 270, 76, 8, 1250, 2625, 2200, 920, 192, 16, 6250, 15625, 16250, 9000, 2800, 464, 32, 31250, 90625, 112500, 77500, 32000, 7920, 1088, 64, 156250, 515625, 743750, 612500, 315000, 103600, 21280, 2496, 128
Offset: 0

Views

Author

Clark Kimberling, Aug 04 2011

Keywords

Comments

This triangle is obtained by reversing the rows of the triangle A193726.
Triangle T(n,k), read by rows, given by (2,3,0,0,0,0,0,0,0,...) DELTA (1,1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 05 2011

Examples

			First six rows:
     1;
     2,    1;
    10,    9,    2;
    50,   65,   28,   4;
   250,  425,  270,  76,   8;
  1250, 2625, 2200, 920, 192; 16;
		

Crossrefs

Programs

  • Magma
    function T(n, k) // T = A193727
      if k lt 0 or k gt n then return 0;
      elif n lt 2 then return n-k+1;
      else return 5*T(n-1, k) + 2*T(n-1, k-1);
      end if;
    end function;
    [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 02 2023
    
  • Mathematica
    (* First program *)
    z = 8; a = 1; b = 2; c = 1; d = 2;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193726 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]  (* A193727 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, n-k+1, 5*T[n-1, k] + 2*T[n-1, k-1]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 02 2023 *)
  • SageMath
    def T(n, k): # T = A193727
        if (k<0 or k>n): return 0
        elif (n<2): return n-k+1
        else: return 5*T(n-1, k) + 2*T(n-1, k-1)
    flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 02 2023

Formula

T(n,k) = A193726(n,n-k).
T(n,k) = 2*T(n-1,k-1) + 5*T(n-1,k) with T(0,0)=T(1,1)=1 and T(1,0)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1-3*x-x*y)/(1-5*x-2*x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 02 2023: (Start)
T(n, 0) = A020699(n).
T(n, 1) = A081040(n-1).
T(n, n) = A011782(n).
Sum_{k=0..n} T(n, k) = A169634(n-1) + (4/7)*[n=0].
Sum_{k=0..n} (-1)^k * T(n, k) = A133494(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = 2*A015535(n) + A015535(n-1) + (1/2)*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = 2*A107839(n-1) - A107839(n-2) + (1/2)*[n=0]. (End)