A193729 Mirror of the triangle A193728.
1, 1, 2, 3, 10, 8, 9, 42, 64, 32, 27, 162, 360, 352, 128, 81, 594, 1728, 2496, 1792, 512, 243, 2106, 7560, 14400, 15360, 8704, 2048, 729, 7290, 31104, 73440, 103680, 87552, 40960, 8192, 2187, 24786, 122472, 344736, 604800, 677376, 473088, 188416, 32768
Offset: 0
Examples
First six rows: 1; 1, 2; 3, 10, 8; 9, 42, 64, 32; 27, 162, 360, 352, 128; 81, 594, 1728, 2496, 1792, 512;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
function T(n, k) // T = A193729 if k lt 0 or k gt n then return 0; elif n lt 2 then return k+1; else return 3*T(n-1, k) + 4*T(n-1, k-1); end if; end function; [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 28 2023
-
Mathematica
(* First program *) z = 8; a = 1; b = 2; c = 2; d = 1; p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193728 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193729 *) (* Second program *) T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, k+1, 3*T[n-1,k] + 4*T[n -1, k-1]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 28 2023 *)
-
SageMath
def T(n, k): # T = A193729 if (k<0 or k>n): return 0 elif (n<2): return k+1 else: return 3*T(n-1, k) + 4*T(n-1, k-1) flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 28 2023
Formula
Let w(n,k) be the triangle of A193728, then the triangle in this sequence is given by w(n,n-k).
T(n,k) = 4*T(n-1,k-1) + 3*T(n-1,k) with T(0,0)=T(1,0)=1 and T(1,1)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1-2*x-2*x*y)/(1-3*x-4*x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Nov 28 2023: (Start)
T(n, 0) = A133494(n).
T(n, 1) = 2*A081038(n-1).
T(n, n) = A081294(n).
Sum_{k=0..n} T(n, k) = (1/7)*(4*[n=0] + 3*A000420(n)).
Sum_{k=0..n} (-1)^k * T(n, k) = A033999(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = (1/2)*[n=0] + A108981(n-1).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = (1/2)*[n=0] + A247560(n-1).
(End)
Comments