A193734 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(2x+1)^n and q(n,x)=(x+2)^n.
1, 1, 2, 1, 6, 8, 1, 10, 32, 32, 1, 14, 72, 160, 128, 1, 18, 128, 448, 768, 512, 1, 22, 200, 960, 2560, 3584, 2048, 1, 26, 288, 1760, 6400, 13824, 16384, 8192, 1, 30, 392, 2912, 13440, 39424, 71680, 73728, 32768, 1, 34, 512, 4480, 25088, 93184, 229376, 360448, 327680, 131072
Offset: 0
Examples
First six rows: 1; 1, 2; 1, 6, 8; 1, 10, 32, 32; 1, 14, 72, 160, 128; 1, 18, 128, 448, 768, 512;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
function T(n, k) // T = A193734 if k lt 0 or k gt n then return 0; elif n lt 2 then return k+1; else return T(n-1, k) + 4*T(n-1, k-1); end if; end function; [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 19 2023
-
Mathematica
(* First program *) z = 8; a = 2; b = 1; c = 1; d = 2; p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193734 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193735 *) (* Second program *) T[n_, k_]:= T[n,k]= If[k<0 || k>n, 0, If[n<2, k+1, T[n-1,k] +4*T[n-1,k-1]]]; Table[T[n,k], {n,0,12}, {k,0,n}]//TableForm (* G. C. Greubel, Nov 19 2023 *)
-
SageMath
def T(n, k): # T = A193734 if (k<0 or k>n): return 0 elif (n<2): return k+1 else: return T(n-1, k) +4*T(n-1, k-1) flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 19 2023
Formula
T(n,k) = 4*T(n-1,k-1) + T(n-1,k) with T(0,0)=T(1,0)=1 and T(1,1)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1 - 2*x*y)/(1 - x - 4*x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Nov 19 2023: (Start)
T(n, n) = A081294(n).
Sum_{k=0..n} T(n, k) = A005053(n).
Sum_{k=0..n} (-1)^k * T(n, k) = (-1)^n * A133494(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A026581(n-1) + (1/2)*[n=0]. (End)
Comments