A193735 Mirror of the triangle A193734.
1, 2, 1, 8, 6, 1, 32, 32, 10, 1, 128, 160, 72, 14, 1, 512, 768, 448, 128, 18, 1, 2048, 3584, 2560, 960, 200, 22, 1, 8192, 16384, 13824, 6400, 1760, 288, 26, 1, 32768, 73728, 71680, 39424, 13440, 2912, 392, 30, 1, 131072, 327680, 360448, 229376, 93184, 25088, 4480, 512, 34, 1
Offset: 0
Examples
First six rows: 1; 2, 1; 8, 6, 1; 32, 32, 10, 1; 128, 160, 72, 14, 1; 512, 768, 448, 128, 18, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
function T(n, k) // T = A193735 if k lt 0 or k gt n then return 0; elif n lt 2 then return n-k+1; else return 4*T(n-1, k) + T(n-1, k-1); end if; end function; [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 19 2023
-
Mathematica
(* First program *) z = 8; a = 2; b = 1; c = 1; d = 2; p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193734 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193735 *) (* Second program *) T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, n-k+1, 4*T[n-1, k] + T[n -1, k-1]]]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 19 2023 *)
-
SageMath
def T(n, k): # T = A193735 if (k<0 or k>n): return 0 elif (n<2): return n-k+1 else: return 4*T(n-1, k) + T(n-1, k-1) flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 19 2023
Formula
T(n,k) = A193734(n,n-k).
T(n,k) = T(n-1,k-1) + 4*T(n-1,k) with T(0,0)=T(1,1)=1 and T(1,0)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1-2*x)/(1-4*x-x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Nov 19 2023: (Start)
T(n, 0) = A081294(n).
Sum_{k=0..n} T(n, k) = A005053(n).
Sum_{k=0..n} (-1)^k * T(n, k) = A133494(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A001077(n).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A001075(n). (End)
Comments