cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193737 Mirror of the triangle A193736.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 4, 3, 1, 3, 8, 8, 4, 1, 5, 15, 19, 13, 5, 1, 8, 28, 42, 36, 19, 6, 1, 13, 51, 89, 91, 60, 26, 7, 1, 21, 92, 182, 216, 170, 92, 34, 8, 1, 34, 164, 363, 489, 446, 288, 133, 43, 9, 1, 55, 290, 709, 1068, 1105, 826, 455, 184, 53, 10, 1, 89, 509, 1362, 2266, 2619, 2219, 1414, 682, 246, 64, 11, 1
Offset: 0

Views

Author

Clark Kimberling, Aug 04 2011

Keywords

Comments

This triangle is obtained by reversing the rows of the triangle A193736.

Examples

			First six rows:
  1;
  1,  1;
  1,  2,  1;
  2,  4,  3,  1;
  3,  8,  8,  4,  1;
  5, 15, 19, 13,  5,  1;
		

Crossrefs

Cf. A000007, A011782 (diagonal sums), A019590, A052542 (row sums).

Programs

  • Magma
    function T(n,k) // T = A193737
      if k lt 0 or n lt 0 then return 0;
      elif n lt 3 then return Binomial(n,k);
      else return T(n - 1, k) + T(n - 1, k - 1) + T(n - 2, k);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 24 2023
    
  • Mathematica
    (* First program *)
    z=20;
    p[0, x_]:= 1;
    p[n_, x_]:= Fibonacci[n+1, x] /; n > 0
    q[n_, x_]:= (x + 1)^n;
    t[n_, k_]:= Coefficient[p[n, x], x^(n-k)];
    t[n_, n_]:= p[n, x] /. x -> 0;
    w[n_, x_]:= Sum[t[n, k]*q[n-k+1, x], {k,0,n}]; w[-1, x_] := 1;
    g[n_]:= CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n,-1,z}]] (* A193736 *)
    TableForm[Table[g[n], {n,-1,z}]]
    Flatten[Table[g[n], {n,-1,z}]]          (* A193737 *)
    (* Additional programs *)
    (* Function RiordanSquare defined in A321620. *)
    RiordanSquare[1 + 1/(1 - x - x^2), 11]//Flatten  (* Peter Luschny, Feb 27 2021 *)
    T[n_, k_]:= T[n, k]= If[n<3, Binomial[n, k], T[n-1,k] + T[n-1,k-1] + T[n-2,k]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 24 2023 *)
  • SageMath
    def T(n,k): # T = A193737
        if (n<3): return binomial(n,k)
        else: return T(n-1,k) +T(n-1,k-1) +T(n-2,k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 24 2023

Formula

Write w(n,k) for the triangle at A193736. This is then given by w(n,n-k).
T(0,0) = T(1,0) = T(1,1) = T(2,0) = 1; T(n,k) = 0 if k<0 or k>n; T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k). - Philippe Deléham, Feb 13 2020
From G. C. Greubel, Oct 24 2023: (Start)
T(n, 0) = Fibonacci(n) + [n=0] = A324969(n+1).
T(n, n-1) = n, for n >= 1.
T(n, n-2) = A034856(n-1), for n >= 2.
T(2*n, n) = A330793(n).
Sum_{k=0..n} T(n,k) = A052542(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A011782(n).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k,k) = A019590(n). (End)