A193737 Mirror of the triangle A193736.
1, 1, 1, 1, 2, 1, 2, 4, 3, 1, 3, 8, 8, 4, 1, 5, 15, 19, 13, 5, 1, 8, 28, 42, 36, 19, 6, 1, 13, 51, 89, 91, 60, 26, 7, 1, 21, 92, 182, 216, 170, 92, 34, 8, 1, 34, 164, 363, 489, 446, 288, 133, 43, 9, 1, 55, 290, 709, 1068, 1105, 826, 455, 184, 53, 10, 1, 89, 509, 1362, 2266, 2619, 2219, 1414, 682, 246, 64, 11, 1
Offset: 0
Examples
First six rows: 1; 1, 1; 1, 2, 1; 2, 4, 3, 1; 3, 8, 8, 4, 1; 5, 15, 19, 13, 5, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
function T(n,k) // T = A193737 if k lt 0 or n lt 0 then return 0; elif n lt 3 then return Binomial(n,k); else return T(n - 1, k) + T(n - 1, k - 1) + T(n - 2, k); end if; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 24 2023
-
Mathematica
(* First program *) z=20; p[0, x_]:= 1; p[n_, x_]:= Fibonacci[n+1, x] /; n > 0 q[n_, x_]:= (x + 1)^n; t[n_, k_]:= Coefficient[p[n, x], x^(n-k)]; t[n_, n_]:= p[n, x] /. x -> 0; w[n_, x_]:= Sum[t[n, k]*q[n-k+1, x], {k,0,n}]; w[-1, x_] := 1; g[n_]:= CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n,-1,z}]] (* A193736 *) TableForm[Table[g[n], {n,-1,z}]] Flatten[Table[g[n], {n,-1,z}]] (* A193737 *) (* Additional programs *) (* Function RiordanSquare defined in A321620. *) RiordanSquare[1 + 1/(1 - x - x^2), 11]//Flatten (* Peter Luschny, Feb 27 2021 *) T[n_, k_]:= T[n, k]= If[n<3, Binomial[n, k], T[n-1,k] + T[n-1,k-1] + T[n-2,k]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 24 2023 *)
-
SageMath
def T(n,k): # T = A193737 if (n<3): return binomial(n,k) else: return T(n-1,k) +T(n-1,k-1) +T(n-2,k) flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 24 2023
Formula
Write w(n,k) for the triangle at A193736. This is then given by w(n,n-k).
T(0,0) = T(1,0) = T(1,1) = T(2,0) = 1; T(n,k) = 0 if k<0 or k>n; T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k). - Philippe Deléham, Feb 13 2020
From G. C. Greubel, Oct 24 2023: (Start)
T(n, 0) = Fibonacci(n) + [n=0] = A324969(n+1).
T(n, n-1) = n, for n >= 1.
T(n, n-2) = A034856(n-1), for n >= 2.
T(2*n, n) = A330793(n).
Sum_{k=0..n} T(n,k) = A052542(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A011782(n).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k,k) = A019590(n). (End)
Comments