A193738 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=q(n,x)=x^n+x^(n-1)+...+x+1.
1, 1, 1, 1, 2, 2, 1, 2, 3, 3, 1, 2, 3, 4, 4, 1, 2, 3, 4, 5, 5, 1, 2, 3, 4, 5, 6, 6, 1, 2, 3, 4, 5, 6, 7, 7, 1, 2, 3, 4, 5, 6, 7, 8, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 1, 2, 3, 4
Offset: 0
Examples
First six rows: 1 1....1 1....2....2 1....2....3....3 1....2....3....4...4 1....2....3....4...5...5
Links
- Reinhard Zumkeller, Rows n = 0..100 of triangle, flattened
Programs
-
Haskell
a193738 n k = a193738_tabl !! n !! k a193738_row n = a193738_tabl !! n a193738_tabl = map reverse a193739_tabl -- Reinhard Zumkeller, May 11 2013
-
Mathematica
z = 12; p[0, x_] := 1 p[n_, x_] := x*p[n - 1, x] + 1; p[n_, 0] := p[n, x] /. x -> 0 q[n_, x_] := p[n, x] t[n_, k_] := Coefficient[p[n, x], x^(n - k)]; t[n_, n_] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193738 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193739 *)
Comments