A193744 Partial sum of Perrin numbers.
3, 3, 5, 8, 10, 15, 20, 27, 37, 49, 66, 88, 117, 156, 207, 275, 365, 484, 642, 851, 1128, 1495, 1981, 2625, 3478, 4608, 6105, 8088, 10715, 14195, 18805, 24912, 33002, 43719, 57916, 76723, 101637, 134641, 178362, 236280, 313005, 414644, 549287, 727651, 963933, 1276940, 1691586
Offset: 0
Examples
For n=2, a(2)=Perrin(0)+Perrin(1)+Perrin(2)=3+0+2=5.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1).
Crossrefs
Cf. A001608.
Programs
-
Maple
perrin[0]:=3: perrin[1]:=0: perrin[2]:=2: a[0]:=3: a[1]:=3: a[2]:=5: for n from 0 to 100 do perrin[n]:=perrin[n-2]+perrin[n-3]: a[n]:=a[n-1]+perrin[n]: end do;
-
Mathematica
LinearRecurrence[{0, 1, 1}, {3, 0, 2}, {6, 52}] - 2 (* Alonso del Arte, Aug 05 2011, based on Harvey P. Dale's program for A001608 *) LinearRecurrence[{1, 1, 0, -1},{3, 3, 5, 8},47] (* Ray Chandler, Aug 03 2015 *)
Formula
a(n) = Perrin(n+5)-2.
a(n) = r1^(n+5)+r2^(n+5)+r3^(n+5)-2, where r1, r2, r3 are the three roots of x^3-x-1 = 0.
G.f.: (3 - x^2)/(1 - x^2 - x^3)/(1-x) = (3 - x^2) / (1 - x - x^2 + x^4). a(n) = a(n-1) + a(n-2) - a(n-4) for n > 2. - Franklin T. Adams-Watters, Aug 05 2011