cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193744 Partial sum of Perrin numbers.

Original entry on oeis.org

3, 3, 5, 8, 10, 15, 20, 27, 37, 49, 66, 88, 117, 156, 207, 275, 365, 484, 642, 851, 1128, 1495, 1981, 2625, 3478, 4608, 6105, 8088, 10715, 14195, 18805, 24912, 33002, 43719, 57916, 76723, 101637, 134641, 178362, 236280, 313005, 414644, 549287, 727651, 963933, 1276940, 1691586
Offset: 0

Views

Author

Francesco Daddi, Aug 04 2011

Keywords

Examples

			For n=2, a(2)=Perrin(0)+Perrin(1)+Perrin(2)=3+0+2=5.
		

Crossrefs

Cf. A001608.

Programs

  • Maple
    perrin[0]:=3: perrin[1]:=0: perrin[2]:=2: a[0]:=3: a[1]:=3: a[2]:=5:  for n from 0 to 100 do perrin[n]:=perrin[n-2]+perrin[n-3]: a[n]:=a[n-1]+perrin[n]: end do;
  • Mathematica
    LinearRecurrence[{0, 1, 1}, {3, 0, 2}, {6, 52}] - 2 (* Alonso del Arte, Aug 05 2011, based on Harvey P. Dale's program for A001608 *)
    LinearRecurrence[{1, 1, 0, -1},{3, 3, 5, 8},47] (* Ray Chandler, Aug 03 2015 *)

Formula

a(n) = Perrin(n+5)-2.
a(n) = r1^(n+5)+r2^(n+5)+r3^(n+5)-2, where r1, r2, r3 are the three roots of x^3-x-1 = 0.
G.f.: (3 - x^2)/(1 - x^2 - x^3)/(1-x) = (3 - x^2) / (1 - x - x^2 + x^4). a(n) = a(n-1) + a(n-2) - a(n-4) for n > 2. - Franklin T. Adams-Watters, Aug 05 2011