A193770 Table T(m,n) = (5^m + 3^n)/2, m,n = 0,1,2,..., read by antidiagonals.
1, 2, 3, 5, 4, 13, 14, 7, 14, 63, 41, 16, 17, 64, 313, 122, 43, 26, 67, 314, 1563, 365, 124, 53, 76, 317, 1564, 7813, 1094, 367, 134, 103, 326, 1567, 7814, 39063, 3281, 1096, 377, 184, 353, 1576, 7817, 39064, 195313, 9842, 3283, 1106, 427, 434, 1603, 7826, 39067, 195314
Offset: 0
Examples
The upper left part of the infinite square array reads: [ 1 2 5 14 41 122 365 1094 3281 ...] [ 3 4 7 16 43 124 367 1096 3283 ...] [ 13 14 17 26 53 134 377 1106 3293 ...] [ 63 64 67 76 103 184 427 1156 3343 ...] [ 313 314 317 326 353 434 677 1406 3593 ...] [1563 1564 1567 1576 1603 1684 1927 2656 4843 ...] [7813 7814 7817 7826 7853 7934 8177 8906 11093 ...] [...]
Links
- Ivan Neretin, Table of n, a(n) for n = 0..5049
Programs
-
Mathematica
Flatten@Table[(5^j + 3^(i - j))/2, {i, 0, 8}, {j, 0, i}] (* Ivan Neretin, Sep 07 2017 *)
-
PARI
for(x=0,10,for(y=0,x, print1((3^(x-y)+5^y)/2 ","))) \\ prints this sequence; to get the table, use matrix(7,9,m,n,3^n/3+5^m/5)/2 \\ M. F. Hasler, Jan 06 2013
Formula
T(m,n+4) = T(m,n) (mod 10),
T(m+1,n) = T(m,n) (mod 10) for m > 0,
T(m+1,n) = T(m,n) + 50 (mod 100) for m > 1, etc. - M. F. Hasler, Jan 06 2013
Comments