A193787 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(x+1)^n and q(n,x)=1+x^n.
1, 1, 1, 1, 1, 2, 1, 2, 1, 4, 1, 3, 3, 1, 8, 1, 4, 6, 4, 1, 16, 1, 5, 10, 10, 5, 1, 32, 1, 6, 15, 20, 15, 6, 1, 64, 1, 7, 21, 35, 35, 21, 7, 1, 128, 1, 8, 28, 56, 70, 56, 28, 8, 1, 256, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 512, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1
Offset: 0
Examples
First six rows: 1 1....1 1....1....2 1....2....1....4 1....3....3....1...8 1....4....6....4...1...16 (viz., Pascal's triangle with row sum at end of each row)
Programs
-
Mathematica
z = 12; a = 1; b = 1; p[n_, x_] := (a*x + b)^n q[n_, x_] := 1 + x^n ; q[n_, 0] := q[n, x] /. x -> 0; t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193787 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193554 *)
Comments