cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193803 Length of perfect Wichmann rulers.

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 22, 29, 36, 43, 46, 50, 57, 64, 68, 71, 79, 90, 101, 108, 112, 123, 134, 138, 145, 153, 156, 168, 175, 183
Offset: 1

Views

Author

Peter Luschny, Oct 22 2011

Keywords

Comments

R is a perfect Wichmann ruler iff R is a perfect ruler (for definition see A103294) and there exist two integers r>=0 and s>=0 such that the type of the difference representation of the ruler is [1*r, r+1, (2r+1)*r, (4r+3)*s, (2r+2)*(r+1), 1*r].

Examples

			[0, 1, 2, 5, 10, 15, 26, 37, 48, 54, 60, 66, 67, 68] is a perfect Wichmann ruler with length 68 of Wichmann type (2,3). By contrast [0, 1, 2, 8, 15, 16, 26, 36, 46, 56, 59, 63, 65, 68] is a perfect ruler with length 68 which is not a Wichmann ruler.
		

Crossrefs