cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193804 Square array read by antidiagonals: S(n,k) = n - A193805(n,k).

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 1, 2, 1, 1, 0, 4, 2, 3, 2, 1, 0, 1, 4, 2, 2, 1, 1, 0, 4, 2, 4, 3, 2, 2, 1, 0, 3, 4, 2, 4, 1, 3, 1, 1, 0, 6, 4, 5, 3, 5, 3, 2, 2, 1, 0, 1, 6, 3, 4, 2, 4, 1, 2, 1, 1, 0, 8, 2, 7, 5, 5, 4, 4, 3, 3, 2, 1, 0, 1, 8, 2, 6, 4, 5, 1, 4, 2, 2, 1, 1, 0
Offset: 1

Views

Author

Peter Luschny, Aug 06 2011

Keywords

Comments

Let cophi(n) be the cototient function A051953(n). Then cophi(n) = S(n,1) = S(n,n).

Examples

			[x][1][2][3][4][5][6][7][8]
[1] 0, 0, 0, 0, 0, 0, 0, 0
[2] 1, 1, 1, 1, 1, 1, 1, 1
[3] 1, 2, 1, 2, 1, 2, 1, 2
[4] 2, 2, 3, 2, 2, 3, 2, 2
[5] 1, 2, 2, 3, 1, 3, 1, 3
[6] 4, 4, 4, 4, 5, 4, 4, 4
[7] 1, 2, 2, 3, 2, 4, 1, 3
[8] 4, 4, 5, 4, 5, 5, 5, 4
Triangle k=1..n, n>=1:
[1]           0
[2]          1, 1
[3]        1, 2, 1
[4]       2, 2, 3, 2
[5]     1, 2, 2, 3, 1
[6]    4, 4, 4, 4, 5, 4
[7]  1, 2, 2, 3, 2, 4, 1
[8] 4, 4, 5, 4, 5, 5, 5, 4
Triangle n=1..k, k>=1:
[1]            0
[2]           0, 1
[3]         0, 1, 1
[4]        0, 1, 2, 2
[5]      0, 1, 1, 2, 1
[6]     0, 1, 2, 3, 3, 4
[7]   0, 1, 1, 2, 1, 4, 1
[8]  0, 1, 2, 2, 3, 4, 3, 4
S(15, 22) = card({2,3,5,6,9,10,11,12,15}) = 9 as
the defining set is {1,2,..,15} minus {1,4,7,8,13,14}.
		

Crossrefs

Programs

  • Maple
    strongdivisors := n -> numtheory[divisors](n) minus {1}:
    coprimes := n -> select(k->igcd(k,n)=1,{$1..n}):
    S := (n,k) -> nops({seq(i,i={$1..n})}
    minus((coprimes(n) minus strongdivisors(k)))):
    seq(seq(S(n-k+1,k), k=1..n), n=1..8);  # Square array by antidiagonals.
    seq(print(seq(S(n, k), k=1..n)), n=1..8); # Lower triangle.
    seq(print(seq(S(n, k), n=1..k)), k=1..8); # Upper triangle.
  • Mathematica
    s[n_, k_] := Complement[ Range[n], Complement[ Select[ Range[n], CoprimeQ[#, n]&], Divisors[k] // Rest]] // Length; Table[ s[n-k+1, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 30 2013 *)