A193826 Expansion of psi(x^2) * phi(x^7) / (f(-x) * f(-x^7)) in powers of x where phi(), psi(), f() are Ramanujan theta functions.
1, 1, 3, 4, 7, 10, 17, 26, 38, 57, 81, 114, 161, 224, 309, 419, 569, 759, 1011, 1336, 1757, 2296, 2981, 3855, 4956, 6344, 8087, 10272, 12994, 16367, 20561, 25723, 32086, 39902, 49484, 61182, 75439, 92791, 113821, 139294, 170073, 207187, 251853
Offset: 0
Keywords
Examples
G.f. = 1 + x + 3*x^2 + 4*x^3 + 7*x^4 + 10*x^5 + 17*x^6 + 26*x^7 + 38*x^8 + ... G.f. = 1/q + q^11 + 3*q^23 + 4*q^35 + 7*q^47 + 10*q^59 + 17*q^71 + 26*q^83 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A102314.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ x^7, x^14], {x, 0, 4 n}]; a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^7] EllipticTheta[ 2, 0, x] / (2 x^(1/4) QPochhammer[ x] QPochhammer[ x^7]), {x, 0, n}]; a[ n_] := SeriesCoefficient[ QPochhammer[ x^14, x^28]^2 / (QPochhammer[ x, x^2] QPochhammer[ x^2, x^4]^2 QPochhammer[ x^7, x^14]^3), {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^2 * eta(x^14 + A)^5 / (eta(x + A) * eta(x^2 + A) * eta(x^7 + A)^3* eta(x^28 + A)^2), n))};
Formula
Expansion of chi(-x^14)^2 / (chi(-x) * chi(-x^2)^4 * chi(-x^7)^3 ) in powers of x where chi() is a Ramanujan theta function.
Expansion of q^(1/12) * eta(q^4)^2 * eta(q^14)^5 / (eta(q) * eta(q^2) * eta(q^7)^3* eta(q^28)^2) in powers of q.
Euler transform of period 28 sequence [ 1, 2, 1, 0, 1, 2, 4, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 4, 2, 1, 0, 1, 2, 1, 0, ...].
a(n) = A102314(4*n).
a(n) ~ exp(4*Pi*sqrt(n/21)) / (2^(5/2) * 21^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
Comments