A193832 Irregular triangle read by rows in which row n lists 2n-1 copies of 2n-1 and n copies of 2n, for n >= 1.
1, 2, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14
Offset: 1
Examples
a) If written as a triangle the initial rows are 1, 2, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, ... Row sums give A126587. b) An application using the blocks of this sequence: the illustration of the growth of an arrangement which represents the generalized pentagonal numbers A001318. For example; the first 9 positive initial terms: 1, 2, 5, 7, 12, 15, 22, 26, 35. . . 9 . 8 9 . 8 7 9 . 8 6 7 9 . 8 6 5 7 9 . 6 4 5 7 9 . 4 3 5 7 9 . 2 3 5 7 9 . 1 3 5 7 9 ...
Links
- Reinhard Zumkeller, Rows n = 1..150 of triangle, flattened
- Andrew Granville, Squares in arithmetic progressions and infinitely many primes, arXiv:1708.06951 [math.NT], 2017.
- Andrew Granville, Squares in arithmetic progressions and infinitely many primes, The American Mathematical Monthly, 124.10 (2017): 951-954. See p. 952.
Crossrefs
Programs
-
Haskell
a193832 n k = a193832_tabf !! (n-1) !! (k-1) a193832_row n = a193832_tabf !! (n-1) a193832_tabf = zipWith (++) a001650_tabf a111650_tabl a193832' n = a193832_list !! (n - 1) a193832_list = concat a193832_tabf -- Reinhard Zumkeller, Nov 15 2015
-
Mathematica
Array[Join @@ MapIndexed[ConstantArray[#, #/(1 + Boole[First@ #2 == 2])] &, {2 # - 1, 2 #}] &, 7] // Flatten (* or *) Table[If[k <= 2 n - 1, 2 n - 1, 2 n], {n, 7}, {k, 3 n - 1}] // Flatten (* Michael De Vlieger, Dec 14 2017 *)
Formula
a(n) = sqrt(8n/3) plus or minus 1 [Granville] - N. J. A. Sloane, Dec 13 2017
If 8 <= n <= 52, then a(n-1) < a(n) if and only if n is in A221672. - Jonathan Sondow, Dec 14 2017
Extensions
Edited by N. J. A. Sloane, Dec 13 2017
Comments